當前位置:首頁 » 股票股評 » 風險中性求股票上行概率
擴展閱讀
設計總院股票歷史股價 2023-08-31 22:08:17
股票開通otc有風險嗎 2023-08-31 22:03:12
短線買股票一天最好時間 2023-08-31 22:02:59

風險中性求股票上行概率

發布時間: 2022-05-29 07:48:05

① 無套利定價方法與風險中性定價方法的聯系與區別是什麼

一、區別在於兩種定價方法思路不同
無套利定價法的思路:其基本思路為:構建兩種投資組合,讓其終值相等,則其現值一定相等;否則的話,就可以進行套利,即賣出現值較高的投資組合,買入現值較低的投資組合,並持有到期末,套利者就可賺取無風險收益。

風險中性定價法的基本思路:
假定風險中性世界中股票的上升概率為P,由於股票未來期望值按無風險利率貼現的現值必須與股票目前的價格相等,因此可以求出概率P。然後通過概率P計算股票價格
二、聯系
總的來說兩種種定價方法只是思路不同,但是結果是一樣的,並且風險中性定價法是在無套利分析的基礎上做出了所有投資者都是風險中性的假設。

② 風險中性的實踐應用

無效的市場里,通過在同一時間里賤買貴賣的,這種無風險的套利活動往往比較成功。但隨著金融市場變得越來越有效,這種無風險的套利活動變得越來越難以存在,或者說這種套利總是存在風險的。隨著中國股指期貨即將推出,通過金融衍生產品進行風險套利也因此成為可能。風險中性組合的概念
知道,期權的價值由標的資產價格、標的資產價格的波動率、執行價格、到期時間及無風險利率決定,其中任一因素的變動都會影響到期權的價值。但是,可以構造基於若干期權或期權與標的資產的組合,使其價值不受其中一些因素變動的影響,這樣的組合稱之為風險中性組合。常見的有Delta中性組合、Delta-Gamma中性組合及Delta-Gamma-Vega中性組合。這里僅討論前兩類組合。
Delta中性組合的構造
Delta是衡量標的資產價格變動對期權價格影響程度的一個參數,且組合頭寸的Delta值具有可加性。即如果計
算出組合頭寸中所有期權的Delta值,並將他們相加,就可以得出組合頭寸的Delta值,它表明標的股票價格運動一點時,組合價值的增加或減少額。對於一個Delta值為0或近似為0的頭寸稱為Delta中性頭寸,如果一個頭寸是Delta中性的,那麼在短期內對於標的資產價格較小的變化,組合將不會面臨損失的風險或潛在的收益。
例如,已知標的股票的當前價格為S=98,r=6%,!=0.3。當前時間為3月份。某投資者以4.65買入一份6月100買
權,同時以1.54的價格賣出兩份6月110買權,以構造空頭買權比率價差組合。可以看到,以1:2的組合來構造空頭買權比率價差(組合1),一般而言,其Delta值並不為零。這表明,標的股票價格的變動將影響組合的價值。如果要構造Delta中性組合,可以按如下方式構造:做多1份6月100買權,同時做空2.22份6月110買權。這樣,新的比率價差組合的Delta值為:0.508-0.229×2.22=0
考察一周後,股價變動對兩個組合價值的不同影響,虛線是在一周後不同的股票價格(微小變化)時1:2組合的盈
虧情況,實線是1:2.22組合的盈虧情況。可以看到,實線的波動幅度較虛線的波動幅度要小得多。這說明通過構造Delta中性組合,確實能保證在較短時間內,在股價波動不大情況下,組合價值的穩定性,即面臨較小的風險。
然而,如果股價大幅上漲或下跌,或者隨著時間的流逝,或者隱含波動率變動,各期權的Delta將發生變化。一旦這些Delta變化,組合將不再是Delta中性。從而它將面臨著風險。從敏感性參數來看,無論是1:2,還是1:2.22組合,其Gamma均不為零,這說明隨著時間的推移及標的股票價格的運動,原先的Delta中性將不再是中性的了。這時,為了實現波動率套利,必須考慮Delta-Gamma中性。Delta-Gamma中性組合的構造仍然考慮以上情形,當前時間為3月份,標的股票的價格S=98,r=6%,!=0.25,基於標的股票的6月100買權的價格為4.65,6月110買權的價格為1.54。為了構造Gamma中性的空頭買權比率價差組合,假定做多1份6月100買權,同時做空x份6月110買權,則有:Gamma1+x·Gamma2=0;0.0326+x·0.0247=0得:x=-1.32
也就是說,要實現Gamma中性,要做多1份6月100買權,同時做空1.32份6月110買權。但通過這一比例
構造的空頭買權比率價差組合不能保證Delta中性。事實上,該組合的Delta值為:0.508-1.32·0.229=0.206如何保持新的組合為Delta中性(或近似中性)注意到相同執行價格的買權與賣權的Gamma值相等,因此,可以通過分解做多1份6月100買權為做多y份6月100買權,同時做多(1-y)6月100賣權來達到Delta中性,而又不影響原組合的Gamma中性。要求y的值,只要解如下簡
單方程:
0.508y-0.229×1.32+(-0.492)(1-y)=0
解得,y≈0.79
風險中性
也就是說,通過如下操作:做多0.79份6月100買權;做空1.32份6月110買權;做多0.21份6月100賣權。
就能構造既為Delta中性,又為Gamma中性的組合。重新觀察各組合的敏感性參數,對比上述三種組合,發現,第三種組合確實實現了Delta與Gamma中性,進一步觀察各組合價值受標的股票價格變動的影響情況,
相對於組合1和組合2,組合3最為平坦,表明通過構造Delta及Delta-Gamma中性後,組合受價格波動的影響足夠小。由於事先賣出的期權份數多於買入的份數,上述組合屬於賣出波動率策略。希望未來波動率較構造組合時會下降。如果行情的發展確如預期的那樣,比如,sigma由構建組合時的0.25下降為0.20,則便可實現利潤。自構造組合一個月後,波動率保持不變與下降後組合價值的6月100買權(c1)6月110買權(c2)組合1(1c1:-2c2)組合2(1c1:-2.22c2)
實線代表波動率保持在0.25時組合的價值,虛線代表波動率降為0.20時組合的價值,發現,如果價格波動位於當初構造組合時所希望(預期)的波動范圍[100~110]內(即兩個不同的執行價格範圍內),投資者將會因為波動率的下降而實現套利。當然,這種套利要滿足一定的條件,一是到期標的股票價格的波動要落在執行價格的范圍內,二是波動率要如所預期的那樣呈下降趨勢。因此這種套利不是無風險的,這也是稱其為風險套利的原因。但從構造組合的過程來看,這種組合是Delta和Gamma中性,且theta的值也很小,表明時間的流逝對組合價值的影響也是很小的。因此,風險要較一般的1:2組合及僅僅為Delta中性組合的風險要小得多。

③ cpa財務管理期權定價原理問題

當然保證不了,實際上從來不會一致的。還有一個問題:概率統計專業的人都知道一個名言:你無法驗證實際概率。所以你說的「真實的概率」是沒有意義的。

④ 請問,股票價格上漲和下跌的風險中性概率分別為

1.1*p+0.9*(1-p)=1+5%
解得p=0.75

⑤ 如何學注會《財管》:用風險中性原理計算

用風險中性原理計算期權價值是期權估價的重要考點,它有某些內容和復制原理相同,也有其特殊的地方。在學習復習風險中性原理的時候,需關注它特殊的地方。

風險中性原理是指:假設投資者對待風險的態度是中性的,所有證券的預期收益率都應當是無風險利率。風險中性的投資者不需要額外的收益補償其承擔的風險。在風險中性的世界裡,將期望值用無風險利率折現,可以獲得現金流量的現值。

在這種情況下,期望報酬率應符合下列公式:

期望報酬率=無風險利率=(上行概率×上行時收益率)+(下行概率×下行時收益率)

假設股票不派發紅利,股票價格的上升百分比就是股票投資的收益率,股價下降的百分比就是「-收益率」。因此:

期望報酬率=無風險利率=上行概率×股價上升百分比+下行概率×(-股價下降百分比)

會計匯總結梳理用風險中性原理計算期權價值的四個基本步驟(假設股票不派發紅利):

1.確定可能的到期日股票價格

4.計算期權價值

期權價值=(上行概率×上行時的到期日價值+下行概率×下行時的到期日價值)/(1+r)

⑥ 二叉樹期權定價模型 風險中性和動態復制

風險中性:
假設股票基期價格為S(0),每期上漲幅度為U,下跌幅度為D,無風險收益率為r每年,每期間隔為t,期權行權價格為K,討論歐式看漲期權,可以做出如下股票價格二叉樹:
S(0)*U*U
/
S(0)*U
/ \
S(0) S(0)*U*D
\ /
S(0)*D
\
S(0)*D*D
通過末期股票價格和行權價格K可以計算出末期期權價值
f(uu) f(ud) f(dd)
根據風險中性假設,股票每期上漲的概率是p=[e^(rt)-d]/(u-d)
則f(u)=e^(-rt)*[f(uu)*p+f(ud)*(1-p)]
f(d)=e^(-rt)*[f(ud)*p+f(dd)*(1-p)]
f(0)=e^(-rt)*[f(u)*p+f(d)*(1-p)]
聯立:f(0)=e^(-2rt)*[f(uu)*p^2+2f(ud)*p*(1-p)+f(dd)*(1-p)^2]

⑦ 如何理解金融經濟學中的風險中性概率

概率理論:定理1(互補法則)與A互補事件的概率始終是1-P(A)證明:事件A和ā是互補關系,由公理3和公理2可得利用互補法則,可以解決下面這個問題,在兩次連續旋轉的輪盤游戲中,至少有一次是紅色的概率是多少?第一次旋轉紅色不出現的概率是19/37,按照乘法法則,第二次也不出現紅色的概率是(19/37)2=0.2637,因此在這里互補概率就是指在兩次連續旋轉中至少有一次是紅色的概率,定理2不可能事件的概率為零:證明:Q和S是互補事件,按照公理2有P(S)=1,再根據上面的定理1得到P(Q)=0定理3如果若幹事件A1,A2,An∈S每兩兩之間是空集關系,那麼這些所有事件集合的概率等於單個事件的概率的和。注意針對這一定理有效性的決定因素是A1An事件不能同時發生(為互斥事件)。例如,在一次擲骰子中,得到5點或者6點的概率是:P=P(A5)+P(A6)定理4如果事件A,B是差集關系,則有P(A-B)=P(A~B),證明:事件A由下面兩個事件組成:和由公理3得,定理5(任意事件加法法則)對於事件空間S中的任意兩個事件A和B,有如下定理:概率P(A∪B)=P(A)+P(B)證明:事件A∪B由下面三個事件組成:首先根據定理4有:再根據定理3得:例如,在由一共32張牌構成的斯卡特撲克牌中隨機抽出一張,其或者是"方片"或者是""的概率是多少?事件A,B是或者的關系,且可同時發生,就是說抽出的這張牌即可以是"方片",又可以是"",A∩B(既發生A又發生B)的值是1/32,(從示意圖上也可以看出,即是方片又是只有一張,即概率是1/32),因此有如下結果:從圖片上也可看出,符合這一條件的恰好是11張牌。注意到定理3是定理5的特殊情況,即A,B不同時發生,相應的P(A∩B)=0。定理6(乘法法則)事件A,B同時發生的概率是:輪盤游戲示意圖注意應用如上公式的前提是事件A,B相互之間有一定聯系,公式中的P(A|B)是指在B條件下A發生的概率,又稱作條件概率。回到上面的斯卡特游戲中,在32張牌中隨機抽出一張,即是方片又是A的概率是多少呢?現用P(A)代表抽出方片的概率,用P(B)代表抽出A的概率,很明顯,A,B之間有一定聯系,即A里包含有B,B里又包含有A,在A的條件下發生B的概率是P(B|A)=1/8,則有:或者,從上面的圖中也可以看出,符合條件的只有一張牌,即方片A。另一個例子,在32張斯卡特牌里連續抽兩張(第一次抽出的牌不放回去),連續得到兩個A的概率是多少呢?設A,B分別為連續發生的這兩次事件,人們看到,A,B之間有一定聯系,即B的概率由於A發生了變化,屬於條件概率,按照公式有:定理7(無關事件乘法法則)兩個不相關聯的事件A,B同時發生的概率是:注意到這個定理實際上是定理6(乘法法則)的特殊情況,如果事件A,B沒有聯系,則有P(A|B)=P(A),以及P(B|A)=P(B)。觀察一下輪盤游戲中兩次連續的旋轉過程,P(A)代表第一次出現紅色的概率,P(B)代表第二次出現紅色的概率,可以看出,A與B沒有關聯,利用上面提到的公式,連續兩次出現紅色的概率為:忽視這一定理是造成許多玩家失敗的根源,普遍認為,經過連續出現若干次紅色後,黑色出現的概率會越來越大,事實上兩種顏色每次出現的概率是相等的,之前出現的紅色與之後出現的黑色之間沒有任何聯系,因為球本身並沒有"記憶",它並不"知道"以前都發生了什麼。同理,連續10次出現紅色的概率為P=(18/37)10=0.0007

⑧ 保險產品的定價策略

一、區別在於兩種定價方法思路不同
無套利定價法的思路:其基本思路為:構建兩種投資組合,讓其終值相等,則其現值一定相等;否則的話,就可以進行套利,即賣出現值較高的投資組合,買入現值較低的投資組合,並持有到期末,套利者就可賺取無風險收益。
風險中性定價法的基本思路:假定風險中性世界中股票的上升概率為P,由於股票未來期望值按無風險利率貼現的現值必須與股票目前的價格相等,因此可以求出概率P。然後通過概率P計算股票價格
二、聯系
總的來說兩種種定價方法只是思路不同,但是結果是一樣的,並且風險中性定價法是在無套利分析的基礎上做出了所有投資者都是風險中性的假設。

擴展閱讀:【保險】怎麼買,哪個好,手把手教你避開保險的這些"坑"

⑨ 看漲期權價格 題目求解

題目要求看跌期權的價格,由於沒有直接求看跌期權價值的模型(我的cpa書上沒有),所以要先求看漲期權的價值,而對於歐式期權,假定看漲期權和看跌期權有相同的執行價格和到期日,則下述等式成立,
看漲期權價格+執行價格的現值=股票的價格+看跌期權價格
那麼:看跌期權價格=看漲期權價格+執行價格的現值-股票的價格

接下來就求看漲期權的價格,我不知道你用的是什麼書,書上是什麼方法,那我就分別用復制原理和風險中性原理來解一下。

先看復制原理,復制原理就是要創建一個買入股票,同時借入貸款的投資組合,使得組合的投資損益等於期權的損益,這樣創建該組合的成本就是期權的價格了。所以就有下面兩個等式:
股票上行時 期權的價值(上行)=買入股票的數量×上行的股價-借款×(1+利率)
股票下行時 期權的價值(下行)=買入股票的數量×下行的股價-借款×(1+利率)
上面兩式相減,就可以求出買入股票的數量了,代入數字來看一下
期權的價值(上行)=108-99=9
期權的價值(下行)=0 (股價低於執行價格,不會執行該期權,所以價值為0)
買入股票的數量=(9-0)/(108-90)=0.5
把0.5再代入 期權的價值(下行)=買入股票的數量×下行的股價-借款×(1+利率)
可以算出借款=0.5×90/1.05=42.86
這樣期權的價值=投資組合的成本=買入股票支出-借款=0.5*100-42.86=7.14

再來看下風險中性原理
期望的報酬率=上行概率×上行的百分比+下行概率×下行的百分比
5%=p×(108-100)/100+(1-p)*(90-100)/100
得出上行概率P=83.33% 下行概率1-p=16.67%
這樣六個月後的期權價值=上行概率×期權上行價值+下行概率×期權下行價值
其中期權的上下行價值前面已經算過了,直接代入數字,得出六個月後期權價值=7.7997
注意這是六個月後的價值,所以還要對他折現7.7997/1.05=7.14

再來看二叉樹模型,這個方法個人不太推薦一開始用,不利於理解,等把原理弄清了再用比較好, 我就直接代入數字吧。
期權的價值=(1+5%-0.9)/(1.08-0.9)*[(109-100)/1.05]+(1.08-1.05)/(1.08-0.9)*(0/1.05)=7.14

可以看到這三個方法結果都一樣,都是7.14。

最後再用我一開始提到的公式來算一下期權的看跌價值
看跌價值=7.14+99/1.05-100=1.43

我是這幾天剛看的cpa財管期權這一章,現學現賣下吧,也不知道對不對,希望你幫我對下答案,當然你有什麼問題可以發消息來問我,盡量回答吧。

關於「問題補充」的回答:
1、答案和我的結果值一致的,書上p=-0.5*100+51.43=0.43 按公式算應該是1.43,而不是0.43,可能是你手誤或書印錯了。

2、書上用的應該是復制原理,只不過我是站在看漲期權的角度去求,而書上直接從看跌期權的角度去求解,原理是一樣的。我來說明一下:
前面說過復制原理要創建一個投資組合,看漲時這個組合是買入股票,借入資金,看跌時正好相反,賣空股票,借出資金。
把看漲時的公式改一下,改成,
股票上行時 期權的價值(上行)=-賣空股票的數量×上行的股價+借出資金×(1+利率)
股票下行時 期權的價值(下行)=-賣空股票的數量×下行的股價+借出資金×(1+利率)
這時,期權的價值(上行)=0(股價高於執行價格,看跌的人不會行權,所以價值為0)
期權的價值(下行)=108-99=9

你書上x就是賣空股票的數量,y就是借出的資金,代入數字
0=-x108+1.05y
9=-x90+1.05y
你說書上x90+y1.05=15,應該是9而不是15,不然算不出x=-0.5 y=51.43,你可以代入驗算一下。
所以,期權的價值=投資組合的成本=借出的資金-賣空股票的金額=51.43-0.5*100=1.43
書上的做法,比我先求看漲期權價值,再求看跌要直接,學習了。
希望採納