当前位置:首页 » 股票盈亏 » blackscholes模型的股票价格
扩展阅读
设计总院股票历史股价 2023-08-31 22:08:17
股票开通otc有风险吗 2023-08-31 22:03:12
短线买股票一天最好时间 2023-08-31 22:02:59

blackscholes模型的股票价格

发布时间: 2022-03-08 08:21:47

‘壹’ 关于Black-Scholes期权定价模型的问题(悬赏100)

1、那要根据假设来呀
第一,作为基础商品的股票价格是随机波。即假定所有的股票都是无限可分的,交易者能在无交易成本情况下,不断调整股票与期权的头寸状况,得到无风险组合。
第五,存在一无风险利率。在期权有效期内,可以此利率无限制地存款或贷款。
第六,股票不派发股息,期权为欧洲期权。
第七,基础商品价格波动的离散度为一常数。
那你就想想以上假设在什么情况下失效就行了呀。
2、这等待高人提示。

‘贰’ (1) Black-Scholes定价模型

这个定价模型啊,是国外的统一定价模型还是不错的。

‘叁’ Black-Scholes期权定价模型的发展状况

B-S-M模型问世以来,受到普遍的关注与好评,有的学者还对其准确性开展了深入的检验。但同时,不少经济学家对模型中存在的问题亦发表了不同的看法,并从完善与发展B-S-M模型的角度出发,对之进行了扩展。 1977年美国学者伽莱(galai)利用芝加哥期权交易所上市的股票权的数据,首次对布-肖模型进行了检验。此后,不少学者在这一领域内作了有益的探索。其中比较有影响的代表人物有特里皮(trippi)、奇拉斯(chiras)、曼纳斯特(manuster)、麦克贝斯(macbeth)及默维勒(merville)等。综合起来,这些检验得到了如下一些具有普遍性的看法:
1.模型对平值期权的估价令人满意,特别是对剩余有效期限超过两月,且不支付红利者效果尤佳。
2.对于高度增值或减值的期权,模型的估价有较大偏差,会高估减值期权而低估增值期权。
3.对临近到期日的期权的估价存在较大误差。
4.离散度过高或过低的情况下,会低估低离散度的买入期权,高估高离散度的买方期权。但总体而言,布-肖模型仍是相当准确的,是具有较强实用价值的定价模型。
对布-肖模型的检验着眼于从实际统计数据进行分析,对其表现进行评估。而另外的一些研究则从理论分析入手,提出了布-肖模型存在的问题,这集中体现于对模型假设前提合理性的讨论上。不少学者认为,该模型的假设前提过严,影响了其可靠性,具体表现在以下几方面:
首先,对股价分布的假设。布-肖模型的一个核心假设就是股票价格波动满足几何维纳过程,从而股价的分布是对数正态分布,这意味着股价是连续的。麦顿(merton)、约翰·考克斯(John Carrington Cox)、斯蒂芬·罗斯(Stephen A. Ross)、马克·鲁宾斯坦(Mark Rubinstein)等人指出,股价的变动不仅包括对数正态分布的情况,也包括由于重大事件而引起的跳起情形,忽略后一种情况是不全面的。他们用二项分布取代对数正态分布,构建了相应的期权定价模型。
其次,关于连续交易的假设。从理论上讲,投资者可以连续地调整期权与股票间的头寸状况,得到一个无风险的资产组合。但实践中这种调整必然受多方面因素的制约:1.投资者往往难以按同一的无风险利率借入或贷出资金;2.股票的可分性受具体情况制约;3.频繁的调整必然会增加交易成本。因此,现实中常出现非连续交易的情况,此时,投资者的风险偏好必然影响到期权的价格,而布-肖模型并未考虑到这一点。
再次,假定股票价格的离散度不变也与实际情况不符。布莱克本人后来的研究表明,随着股票价格的上升,其方差一般会下降,而并非独立于股价水平。有的学者(包括布莱克本人)曾想扩展布-肖模型以解决变动的离散度的问题,但至今未取得满意的进展。
此外,不考虑交易成本及保证金等的存在,也与现实不符。而假设期权的基础股票不派发股息更限制了模型的广泛运用。不少学者认为,股息派发的时间与数额均会对期权价格产生实质性的影响,不能不加以考察。他们中有的人对模型进行适当调整,使之能反映股息的影响。具体来说,如果是欧洲买方期权,调整的方法是将股票价格减去股息(d)的现值替代原先的股价,而其他输入变量不变,代入布-肖模型即可。若是美国买方期权,情况稍微复杂。第一步先按上面的办法调整后得到不提早执行情况下的价格。第二步需估计在除息日前立即执行情况下期权的价格,将调整后的股价替代实际股价,距除息日的时间替代有效期限、股息调整后的执行价格(x-d)替代实际执行价格,连同无风险利率与股价离散度等变量代入模型即可。第三步选取上述两种情况下期权的较大值作为期权的均衡价格。需指出的是,当支付股息的情况比较复杂时,这种调整难度很大。

‘肆’ 求高人用Black-Scholes模型帮我计算下认沽权证价格

空间,英文名space,是具体事物的组成部分,是运动的表现形式,是人们从具体事物中分解和抽象出来的认识对象

‘伍’ 如何理解 Black-Scholes 期权定价模型

B-S-M模型假设

1、股票价格随机波动并服从对数正态分布;

2、在期权有效期内,无风险利率和股票资产期望收益变量和价格波动率是恒定的;

3、市场无摩擦,即不存在税收和交易成本;

4、股票资产在期权有效期内不支付红利及其它所得(该假设可以被放弃);

5、该期权是欧式期权,即在期权到期前不可实施;

6、金融市场不存在无风险套利机会;

7、金融资产的交易可以是连续进行的;

8、可以运用全部的金融资产所得进行卖空操作。

B-S-M定价公式

C=S·N(d1)-X·exp(-r·T)·N(d2)

其中:

d1=[ln(S/X)+(r+0.5σ^2)T]/(σ√T)

d2=d1-σ·√T

C—期权初始合理价格

X—期权执行价格

S—所交易金融资产现价

T—期权有效期

r—连续复利计无风险利率

σ—股票连续复利(对数)回报率的年度波动率(标准差)

N(d1),N(d2)—正态分布变量的累积概率分布函数,在此应当说明两点:

第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年计息一次,而r要求为连续复利利率。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+r0)或r0=exp(r)-1例如r0=0.06,则r=LN(1+0.06)=0.0583,即100以5.83%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。

第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。

‘陆’ 什么是Black-Scholes的期权定价模型

一个广为使用的期权定价模型,获Nobel Prize。
由BlackScholoes和Melton提出的。
具体证明我就不写了你可以去看原始Paper。
简单说一下:
首先,股价随机过程是马氏链(弱式有效)
假设股价收益率服从维纳过程(布朗运动的数学模型)
则衍生品价格为股价的函数。由ito引理可知衍生品价格服从Ito过程(飘移率和方差率是股价的函数)
第二:通过买入和卖空一定数量的衍生证券和标的证券,Blacksholes发现可以建立一个无风险组合。根据有效市场中无风险组合只获得无风险利率。从而得到一个重要的方程: Black-Scholes微分方程。
第三:根据期权或任何衍生品的条约可列出边界条件。带入微分方程可得定价公式

大概是这个过程,不过这是学校里学的,工作以后Bloomberg终端上会自动帮你计算的。
如果OTC结构化产品定价的话,会更熟悉各种边界条件带入微分方程。不止是简单得Call和Put。

另外你可以理解BSM模型为二叉树模型的极限形式(无限阶段二叉树)

‘柒’ Black-Scholes期权定价模型的分红方法

B-S-M模型只解决了不分红股票的期权定价问题,默顿发展了B-S模型,使其亦运用于支付红利的股票期权
(一)存在已知的不连续红利假设某股票在期权有效期内某时间T(即除息日)支付已知红利DT,只需将该红利现值从股票现价S中除去,将调整后的股票价值S′代入B-S模型中即可:S′=S-DT·E-rT。如果在有效期内存在其它所得,依该法一一减去。从而将B-S模型变型得新公式:
C=(S-·E-γT·N(D1)-L·E-γT·N(D2)
(二)存在连续红利支付是指某股票以一已知分红率(设为δ)支付不间断连续红利,假如某公司股票年分红率δ为0.04,该股票现值为164,从而该年可望得红利164×004=6.56。值得注意的是,该红利并非分4季支付每季164;事实上,它是随美元的极小单位连续不断的再投资而自然增长的,一年累积成为6.56。因为股价在全年是不断波动的,实际红利也是变化的,但分红率是固定的。因此,该模型并不要求红利已知或固定,它只要求红利按股票价格的支付比例固定。
在此红利现值为:S(1-E-δT),所以S′=S·E-δT,以S′代S,得存在连续红利支付的期权定价公式:C=S·E-δT·N(D1)-L·E-γT·N(D2)

‘捌’ 利用Black-Scholes公式对股票价格(指数)走势进行数值模拟

-----------保护自己的财产,保护自己的交易-----
这里就如何提防股票在网上被盗的几点建议,希望对您有所帮助。
(1)精心保管好“三证”(身份证、股东卡、资金卡)和资金存取单据以防不慎被人利用;经常查询股票和资金余额,发现问题及时处理。
(2)注意交易密码和资金账户密码的保密,切忌在公共场合读念个人资料,或将密码写在纸上,也不要当着他人的面输入密码,委托他人交易之后,密码要及时修改,使用电话和自助委托系统时要注意在委托完成之后,将前面输入的密码和数据要消除。
(3)密码设置到最高位。一般营业部的交易密码是6位,建议投资者在设置密码时,不要为了使用方便仅设置4位或者5位密码,因为密码设置的位数越高被破译难度越大。另外尽量不要使用吉祥数字、自己的生日号、电话号码或顺号(如:123456)同一数字(如:666666、888888)等易记的数字作为密码,因为这很容易被人猜测到自己的交易密码,应在自己密码中输入2—3个英文字母。
(4)因为平时交易密码使用频率较高,建议在1—2个月,要更改一次密码。
(5)对于在网上交易的客户,最好不要到网吧等环境复杂的场所上网交易 。另外如果是公用电脑,切记在第一次输入密码后,在提示框中切记不要选择保存密码,因为,当你选择保存时,机器就会自动生成一个后缀为PWL的文件,只要别人一打开这个文件,你的密码也就暴露无遗了。
(6)及时退出交易系统;交易者在使用完交易系统后,一定要注意及时退出交易系统。有的投资者由于不是在同一时间买卖股票,为图方便,因此习惯于按最小化按钮,缩小交易系统在时间栏或任务栏上,此时交易中心和交易软件并没有断开连接,用户如果在离开电脑的时候,忘记退出软件,任何人都可能操作账户,尤其是在一些公共场所,会造成盗买和盗卖股票的现象,威协你股票和资金的安全,造成不必要的损失。
(7)设定的股票交易密码最好同邮箱、OICQ、拨号上网的密码不同。以防为黑客轻易破译密码
(8)为保证交易密码和股票个人资料不泄露,在系统上安装防黑防毒的杀毒软件,并定期升级,也是一个好的举措。
身份证、股东卡、交易磁卡等证件最好不要放在一起,如果你遗失了相关的证件,要及时到开户的证券营业部办理挂失手续,以防你的股票被盗买和盗卖。..00

‘玖’ Black-Scholes期权定价模型的介绍

Black-Scholes-Merton期权定价模型(Black-Scholes-Merton Option Pricing Model),即布莱克—斯克尔斯-默顿期权定价模型。1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(Robert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes),同时肯定了布莱克的杰出贡献。他们创立和发展的布莱克—斯克尔斯期权定价模型(Black-Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础。斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。结果,两篇论文几乎同时在不同刊物上发表。然而,默顿最初并没有获得与另外两人同样的威信,布莱克和斯科尔斯的名字却永远和模型联系在了一起。所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。瑞典皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。

‘拾’ 如何理解Black-Scholes期权定价模型

二项期权定价模型(binomal option price model,SCRR Model,BOPM) Black-Scholes期权定价模型 虽然有许多优点, 但是它的推导过程难以为人们所接受。在1979年, 罗斯等人使用一种比较浅显的方法设计出一种期权的定价模型, 称为二项式模型(Binomial Model)或二叉树法(Binomial tree)。