❶ 关于金融工程学的问题急需。。。。。
1.
这题考的是一级二叉树模型。
设风险中性概率为P,则有:
115 * P + 95 * (1-P) = 100 * (1 + 6%)
解之得:
P = 55%
若股票价格上升,该期权收益为0。若股票价格下跌,该期权收益为10。因此现在期权价值为:
(0 * 55% + 10 * (1-55%))/(1 + 6%) = 4.245
2.
这题可以直接套用Black-Sholes公式。
S为股票现价42。
K为期权执行价格40。
r为年化无风险利率10%。
sigma为波动性20%。
T为期权期限0.5
d1 = (ln(S/K) + (r+(sigma^2)/2)*T)/(sigma * (T^0.5)) = 0.769
d2 = d1 - sigma * (T^0.5) = 0.628
N(-d1) = 0.221
N(-d2) = 0.265
期权价格为:
p = Kexp(-rT)N(-d2) - SN(-d1) = 0.801
3.
这题应该是用利率平价理论。
F是远期汇率。
S是当前汇率。
idollar是美元无风险利率。
ieuro是欧元无风险利率。
F = S * (1 + idollar) / (1 + ieuro) = 1.43 * (1 + 6%) / (1 + 8%) = 1.4035
如果说取两位小数,那么应该是不存在套利机会。
如果硬要说1.4035大于1.40,那么套利方法是:
目前以无风险利率借入美元,以当前汇率兑换成欧元,进行无风险投资,同时做空欧元期货。一年后把投资所得的欧元兑换回美元并偿还债务。
❷ 股票现在的价值为50元。一年后,它的价值可能是55元或40元。
1、看涨期权,55大于48,执行,U=55-48=7
40小于48,不执行,D=0
第二种同理
3、看跌期权,55大于45,不执行,U=0,40小于45,执行,D=45-40=5