㈠ 什么是蒙特卡洛模拟( Monte Carlo simulation)
蒙特卡洛模拟又称为随机抽样或统计试验方法,属于计算数学的一个分支,它是在上世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
蒙特卡洛随机模拟法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。
蒙特卡洛随机模拟法 - 实施步骤抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。
(1)股票价格的蒙特卡洛仿真扩展阅读
基本原理思想
当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。
蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。
㈡ 什么是蒙特卡罗仿真
蒙特卡罗模拟因摩纳哥着名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。数学家们称这种表述为“模式”,而当一种模式足够精确时,他能产生与实际操作中对同一条件相同的反应。但蒙特卡罗模拟有一个危险的缺陷:如果必须输入一个模式中的随机数并不像设想的那样是随机数,而却构成一些微妙的非随机模式,那么整个的模拟(及其预测结果)都可能是错的。
(2)股票价格的蒙特卡洛仿真扩展阅读:
蒙特卡罗模拟在金融工程学,宏观经济学,生物医学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域也应用广泛。
计算机技术的发展,使得蒙特卡罗模拟在最近10年得到快速的普及。现代的蒙特卡罗模拟,已经不必亲自动手做实验,而是借助计算机的高速运转能力,使得原本费时费力的实验过程,变成了快速和轻而易举的事情。它不但用于解决许多复杂的科学方面的问题,也被项目管理人员经常使用。
㈢ 什么是蒙特卡洛模拟( Monte Carlo simulation)
我们一直面对着不确定,不明确和变异。甚至我们无法获得信息,我们不能准确的预测未来。蒙特卡洛模拟( Monte Carlo simulation)让您看到了您决策的所有可能的输出,并评估风险,允许在不确定的情况下制定更好的决策。蒙特卡洛模拟( Monte Carlo simulation)是一种计算机数学技术,允许人们在定量分析和决策制定过程中量化风险。这项技术被专家们用于各种不同的领域,比如财经,项目管理,能源,生产,工程,研究和开发,保险,石油&天然气,物流和环境。蒙特卡洛模拟( Monte Carlo simulation)提供给了决策制定者大范围的可能输出和任意行动选择将会发生的概率。它显示了极端的可能性-最的输出,最保守的输出-以及对于中间路线决策的最可能的结果。这项技术首先被从事原子弹工作的科学家使用;它被命名为蒙特卡洛,摩纳哥有名的娱乐旅游胜地。它是在二战的时候被传入的,蒙特卡洛模拟( Monte Carlo simulation)现在已经被用于建模各种物理和概念系统。蒙特卡洛模拟( Monte Carlo simulation)是如何工作的蒙特卡洛模拟( Monte Carlo simulation)通过构建可能结果的模型-通过替换任意存在固有不确定性的因子的一定范围的值(概率分布)-来执行风险分析。它一次又一次的计算结果,每次使用一个从概率分布获得的不同随机数集。根据不确定数和为他们制定的范围,蒙特卡洛模拟( Monte Carlo simulation)能够在它完成计算前调用成千上万次的重复计算。蒙特卡洛模拟( Monte Carlo simulation)产生可能结果输出值的分布。通过使用概率分布,变量能够拥有不同结果发生的不同概率。概率分布是一种用来描述风险分析的变量中的不确定性的更加可行的方法。常用的概率分布包括:正态分布(Normal)-或"钟型曲线".用户简单的定义均值或期望值和标准差来描述关于均值的变异。在中部靠近均值的值是最有可能发生的值。它是对称的,可以用来描述多种自然现象,比如人的身高。可以通过正态分布描述的变量示例包括通货膨胀率和能源价格。对数正态分布(Lognormal)-值是正偏的,不像正态分布那样是对称的。它被用来代表不会小于零但可能有无限大正值的结果。可以通过对数正态分布描述的变量示例包括房地产价值,股票价格和石油储量。均匀分布(Uniform)-所有的值发生的机会相等,用户只需制定最小和最大值。可以通过均匀分布描述的变量示例包括一个新产品的制造费用或未来销售收入。三角分布(Triangular)-用户指定最小,最可能和最大值。在最可能附近的值最可能发生。可以通过三角分布描述的变量示例包括每时间单位内的过去销售历史和库存水平。PERT分布-用户指定最小,最可能和最大值,类似三角分布。在最可能附近的值最可能发生。然而在最可能和极值之间的值比三角分布更有可能发生;那就是说,the extremes are not as emphasized. 可以通过三角分布描述的变量示例包括在项目管理模型中的一项任务的持续时间。离散分布(Discrete)-用户指定最可能发生的值和每个值的可能性。比如关于诉讼结果的示例,20%的机会陪审团判决无罪,30%的机会陪审团判决有罪,40%的机会审批有效,10%的机会审批无效。在蒙特卡洛模拟( Monte Carlo simulation)过程中,值被从输入概率分布中随机抽取。每个样本集被称为一次迭代,从样本获得的结果被记录。蒙特卡洛模拟( Monte Carlo simulation)执行这样的操作成百上千次,可能结果形成一个概率分布。用这种方法,蒙特卡洛模拟( Monte Carlo simulation)生成了一个更加全面关于将会发生的结果的视图。它不仅仅告诉什么结果会发生,而且还有结果发生的可能性。蒙特卡洛模拟( Monte Carlo simulation)提供了许多超越确定性或"单点估计"分析的优势:概率结果,结果不仅显示会发生什么,而且还有每个结果发生的可能性图形化报告,因为蒙特卡洛模拟( Monte Carlo simulation)生成的数据,它很容易创建不同结果和他们发生机会的图形。这对于和其他投资者沟通结果是很重要的。敏感性分析,如果只有很少的一些案例,确定性分许就很难发现哪个变量对结果影响最大。在蒙特卡洛模拟( Monte Carlo simulation)中,很容易发现哪个输入对底线结果有最大的影响。情境分析,在确定性模型中,对于为不同输入值的不同组合建模来真实的查看不同情境的效果是很困难的。使用蒙特卡洛模拟( Monte Carlo simulation),分析员能够正确的查看当确定的输出发生时某个输入对应的值。这对于进一步的分析来说是无价的。相关性输入,在蒙特卡洛模拟( Monte Carlo simulation)中,可能要建模输入变量之间的相关关系。它对于准确的描绘在某些因子增长时,其它的因子是如何增长或下降的情况时是重要的。
㈣ 蒙特卡洛 模拟法 计算var 的公式是什么
更为确切的是指,在一定概率水平(置信度)下,某一金融资产或证券组合价值在未来特定时期内的最大可能损失。用公式表示为: Prob(△Ρ<VAR)=1-α 其中Prob表示:资产价值损失小于可能损失上限的概率。 △Ρ表示:某一金融资产在一定持有期△t的价值损失额。 VAR表示:给定置信水平α下的在险价值,即可能的损失上限。 α为:给定的置信水平。 VAR从统计的意义上讲,本身是个数字,是指面临“正常”的市场波动时“处于风险状态的价值”。即在给定的置信水平和一定的持有期限内,预期的最大损失量(可以是绝对值,也可以是相对值)。例如,某一投资公司持有的证券组合在未来24小时内,置信度为95%,在证券市场正常波动的情况下,VaR 值为800万元。其含义是指,该公司的证券组合在一天内(24小时),由于市场价格变化而带来的最大损失超过800万元的概率为5%,平均20个交易日才可能出现一次这种情况。或者说有95%的把握判断该投资公司在下一个交易日内的损失在800万元以内。5%的机率反映了金融资产管理者的风险厌恶程度,可根据不同的投资者对风险的偏好程度和承受能力来确定。 VAR的计算系数 由上述定义出发,要确定一个金融机构或资产组合的VAR值或建立VAR的模型,必须首先确定以下三个系数:一是持有期间的长短;二是置信区间的大小;三是观察期间。 1、持有期。持有期△t,即确定计算在哪一段时间内的持有资产的最大损失值,也就是明确风险管理者关心资产在一天内一周内还是一个月内的风险价值。持有期的选择应依据所持有资产的特点来确定比如对于一些流动性很强的交易头寸往往需以每日为周期计算风险收益和VaR值,如G30小组在1993年的衍生产品的实践和规则中就建议对场外OTC衍生工具以每日为周期计算其VaR,而对一些期限较长的头寸如养老基金和其他投资基金则可以以每月为周期。 从银行总体的风险管理看持有期长短的选择取决于资产组合调整的频度及进行相应头寸清算的可能速率。巴塞尔委员会在这方面采取了比较保守和稳健的姿态,要求银行以两周即10个营业日为持有期限。 2、置信水平α。一般来说对置信区间的选择在一定程度上反映了金融机构对风险的不同偏好。选择较大的置信水平意味着其对风险比较厌恶,希望能得到把握性较大的预测结果,希望模型对于极端事件的预测准确性较高。根据各自的风险偏好不同,选择的置信区间也各不相同。比如J.P. Morgan与美洲银行选择95%,花旗银行选择95.4%,大通曼哈顿选择97.5%,Bankers Trust选择99%。作为金融监管部门的巴塞尔委员会则要求采用99%的置信区间,这与其稳健的风格是一致的。 3、第三个系数是观察期间(Observation Period)。观察期间是对给定持有期限的回报的波动性和关联性考察的整体时间长度,是整个数据选取的时间范围,有时又称数据窗口(Data Window)。例如选择对某资产组合在未来6个月,或是1年的观察期间内,考察其每周回报率的波动性(风险) 。这种选择要在历史数据的可能性和市场发生结构性变化的危险之间进行权衡。为克服商业循环等周期性变化的影响,历史数据越长越好,但是时间越长,收购兼并等市场结构性变化的可能性越大,历史数据因而越难以反映现实和未来的情况。巴塞尔银行监管委员会目前要求的观察期间为1年。 综上所述,VaR实质是在一定置信水平下经过某段持有期资产价值损失的单边临界值,在实际应用时它体现为作为临界点的金额数目。
㈤ 怎么用 Excel 做蒙特卡洛模拟
Excel 做蒙特卡洛模拟的具体操作步骤如下:
1、打开Excel表格,填写三个活动时间估算的乐观值,最可能值和悲观值。
㈥ 蒙特卡洛公式计算股价准确吗
蒙特卡洛公式计算股价准确。蒙特卡罗方法是由冯诺依曼和乌拉姆等人发明的,蒙特卡罗这个名字是出自摩纳哥的蒙特卡罗赌场,这个方法是一类基于概率的方法的统称,不是特指一种方法。蒙特卡罗方法也成统计模拟方法,是指使用随机数(或者更常见的伪随机数)来解决很多计算问题的方法。工作原理就是两件事:不断抽样、逐渐逼近。
㈦ 什么是蒙特卡洛仿真,如何在R中应用,举个例子
蒙特卡洛模拟法求解步骤应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下:根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致 2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。 3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。 4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。 5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。