① 上海交大发现量子通信的漏洞,量子通讯还安全吗
理论上已经证明,理想的量子通讯是绝对安全,但是现有的量子通讯技术,由于设备的非理想化,还是给窃听者留下了漏洞。
从本质上说,这个漏洞是设备的非理想化造成的,当前量子加密技术还不完善,相信随着技术的提高,量子通信技术会越来越接近理想化,最终达到绝对的安全性。
在传统加密通讯中,加密信息是基于数学算法达到的安全性;比如RAS加密算法,就是利用把两个大数相乘很容易,但是要把大数分解却非常难,以此作为算法的复杂程度不可逆性,来实现信息加密。
但是随着计算机水平的提高,基于数学加密的方法越来越不安全,尤其是传统加密在量子计算机面前不堪一击,所以全新的量子加密通讯,在未来将成为主流。
量子通信最大的特点,就是不依赖于数学算法,而是依赖于量子基本原理——不确定性原理和波函数坍缩原理;只要这两条物理原理不被破坏,我们就有把握说理想的量子通信是绝对安全的。
在1984年,两位科学家Bennett和Brassard,联合提出了世界上第一个量子通讯加密协议——BB84,从此拉开了量子加密实用化的进程。
在2001年,理想化的BB84协议被证明无条件安全,无论是传统窃听技术,还是量子技术,都无法攻破BB84的加密信息。
然而理想很美好,可现实是骨感的!在量子密钥分发中,有以下几个技术难点:
(1)要求发射方是单光子源;
(2)要求接收方是单光子探测器;
(3)要求信道无干扰;
(4)设备的非理想特性;
(5)身份认证和密钥储存,存在技术难点;
针对每条难点,我们都有办法来逐一攻克;比如对于单光子源,我们可以采用弱相干光来代替;信道干扰我们就使用纠错码,纠错码的效率低,我们就继续增加纠错码
而这次上海交通大学发现的漏洞,就出在设备的非理想特性上,并非量子通信的原理问题,相信随着量子技术的发展,未来的量子通信肯定是安全的。
② 我国的量子通信已经走在世界的前端,那么量子通信比传统电磁通信强在哪里呢
位于上海的中科院量子信息和量子科技创新研究院的一间实验室内,三平米的实验台上看似毫无章法、密密麻麻地布满大大小小的镜片和古怪的器件,一些电线从上方的支架上垂落下来,旁边的一台仪器发出单调的“啾啾”声。
这是近20位科研工作者经过4年多孕育出的中国量子计算机“婴儿”,它也是世界上首台超越早期经典计算机的光量子计算机,5月初才在世人面前首次亮相。
那些看似横七竖八排列的反射镜、波片、分束器和其他怪异的元器件,其实是“巫师们”独具匠心地设计、组装起来的。
“我们设计出的超低损耗量子线路效率达到99%,而国际上其他研究组的量子线路效率只有30%。”陆朝阳说。
③ 量子通讯采用单光子传输,单光子如何被抓住有人认为不可能
量子通讯在中国发展得红红火火,特别有一位叫潘建伟的科学家,带领其团队取得了一个又一个突破,走在了世界的前列。有人欢呼,也有人反对和冷嘲热讽。
那些反对的人主要是说,量子通讯就是扯淡,是玩概念,根本不可能实现。其中怀疑最大的就是单光子发射和接收,认为光子是世界上最小的东西,到底多小至今无人知道,人类怎么可能能够捉住一个光子发射出去呢?
但事实是,量子通讯还真的就是依靠一个个单光子传输,这样才能够获得无法破解的保密性。但这个单光子并非某些人凭生活常识想象的那样,像捉豆子那样一个个捉到,再把它通过某种弹弓类装置发射出去。
量子通讯的三大核心技术为:单光子源技术、量子编码和传输技术、光子检测技术。这其中最重要的就是“捉住”单光子,并把它传输出去。这是如何实现的呢?我们来分享一下。
光子是光量子的简称,是传递电磁相互作用的媒介子,是一种基本粒子,具有规范玻色子性质。光量子的概念是爱因斯坦于1905年首先提出,1926年由美国物理化学家吉尔伯特·路易斯正式命名。
1901年,德国物理学家普朗克发现物质发出能量和吸收能量具有不连续性特征,提出能量是一份一份发出的能量子假设,并计算出了最小能量的常量,被称为普朗克常量,这是量子力学的开山之作。
爱因斯坦从普朗克量子理论中得到启发,1905年发表了《关于光的产生和转化的一个试探性观点》的论文,认为光和原子电子一样也具有粒子性,提出“光量子”理论,完美地解释了光电效应,创立了光电效应定律,由此获得1921年诺贝尔物理学奖。
光子具有所有基本粒子共有的特性,即波粒二象性,以波的形式传播,且是一份一份非连续发出。光子一出生就以每秒约30万千米真空速度运动,永远不会停下来,因此没有静质量,但有动量。每个光子能量为:E=hv=hc/λ,即能量E等于普朗克常数乘以频率。
普朗克常数约等于6.626*10^-34J/s(焦耳/秒);每个光子的动量为: p=E/c=h/λ。这几个公式里的 λ表示波长,c表示光速,v表示频率,E表示能量,p表示动量。
由此可以看出,各种光子的能量是不同的,波长越短频率越高的光子能量就更强,反之则更弱。光子是宇宙中数量最多的存在,无论是白天还是黑夜,在我们周围都充满了光子,随便手一拍,就有无数的光子打在我们的手心手背上。
我们人类感受这个世界完全是依靠电磁波,也就是所谓的电磁相互作用力,而光子就是电磁波的传递媒介,因此电磁波也可以说是光波的总称。电磁波波长从长到短分别被人们划分为无线电波、红外线、可见光、紫外线、X射线、γ射线。
这些“光波”人类肉眼只能看到可见光部分,其余波段和频率的“光波”只能用仪器侦测。电磁波的波长从数公里到10^-30米(亿亿亿分之一米以下)不等,无线电波(包括长波、中波、短波、微波)最长,频率最低,能量最弱;伽马射线波长最短,频率最高,能量最强。
电磁波波速为光速,因此波长与频率的关系遵循公式:λ=c/v或v=c/λ。
光子极小,而且极多,一支10瓦的灯泡,发出的能量约10J/s,如果这10J的能量发出的都是可见光波段的话,其波长就约在380~760nm之间,我们去一个平均值为570nm,根据前面的公式,就可以计算出每个光子能量约为3.5*10^-19J,1个10J的灯泡每秒钟发出的光子数就有约2.86*10^19个,就是28.6亿亿个光子。
光本身就携带能量,因此用光通讯早就是常用的方法了。但所谓量子通讯,与常规通讯的最大区别就是安全,是采用单光子传输,理想的单光子源就是每个脉冲中仅含1个光子。
前面说了,随便一束光都有无数光子,科学家们如何从这么多的光子中,把光子分成1个个分发出去呢?这就需要制造单光子源的机器。现代 科技 要制造出单光子源并不难,难的是高质量高效率的单光子源。
理论上,只要通过不断将一个既定能量的光脉冲不断衰减,就能得到所谓的单光子源。如脉动激光器,每个脉冲能量都是一定的,我们知道了既定波段或频率的光子能量,就能够计算出每个脉冲发出的光子数量,通过采用衰减片,将光束衰减足够的倍数,就能够达到每个脉冲所需发出的光子数了。
如某个脉冲激光发射器,原来每个脉冲发出100万个光子,把这束光衰减1000万倍,这样每个脉冲平均发射的光子就只有0.1个了,也就是10个脉冲里可能有1个脉冲会有1个光子,其他9个脉冲没有光子,这样这个脉冲激光器就成为单光子源了。
这种方法理论上还可以再稀释光子倍数,如稀释1亿倍甚至10亿倍,这样,就可能在100个甚至1000个脉冲里出现1次2个光子现象,这样似乎单光子获得率大大提升了。
目前,实验室的单光子源绝大多数是采用这种方法。但这种单光子源光子数服从泊松分布,严格来讲很难实现高效率单光子脉冲。因为这个随机过程并不会以人的意志为转移,有时候会出现1个脉冲包含2个光子的情况,这样就降低了量子通讯的可控性和安全性。
衰减倍数越大,得到单光子的概率会提高,但没有光子的空脉冲就越多,效率就大大降低了。因此,这种傻瓜式的精度提升,与效率背道而驰。
所以, 一个完美的单光子源,需要同时满足确定性偏振、高纯度、高全同性和高效率,这是四个几乎相互矛盾的严苛条件,解决这个矛盾, 这才是技术难点 。
由此,科学家们又研究出许多获得单光子源的方法,其中量子点单光子源是目前比较先进的方法。这种方法可以让量子点稳定地发出单个光子流,与其他单光子源相比,量子点单光子源具有较高的振子强度,较窄的谱线宽度,且不会发生 光退色 。
这种单光子源技术,美国斯坦福大学在2001年就研发出来了,大大降低了第二个光子产生的可能性;2002年东芝和剑桥大学合作,采用量子点结构的LED实现了电注入单光子发射;我国中科院半导体研究所在2007年成功实现了量子点单光子发射。
现在,我国在量子点单光子发射方面已经走在世界前列,以潘建伟院士为首的中科大团队首创了点脉冲共振激发技术,从根本上消除了量子点激子相干效应。采用这项技术,相比之前万分之一激发功率,就可确定地产生纯度为99.5%的高品质单光子,是国际公认制备高品质单光子的利器。
作为一般科普,这里就不过多罗列其中复杂的专业术语了,有兴趣的朋友可以网络搜阅有关资料。
这些技术包括单光子的编码和传输问题、光子检测和接收问题等等。
如单光子编码,就涉及到用偏振还是相位,就是采用偏振片还是半波片、各种干涉仪,如何处理编码过程带来的损耗等等。
远程传输是采用光纤,还是隔空无线传递,能够传递多远,通过什么方法中继,信号如何保持或放大,采取什么样的方式实现量子 密钥分发、量子隐形传态 ,如何解决传输过程中的安全与信号衰减问题。
而在接收终端,就必须有一台精确高效的单光子探测接收装置,也就是说接收到1个光子就能够敏感响应。这一点似乎并不是很难做到,因为人的眼睛只要有10个光子就能够感光,而青蛙的眼睛据说就能够看到单个光子。比较难的是,这个探测器要能够响应合适的波长范围,而且要高效反应,在高噪声环境实现高效通讯。
这些,中国已经取得突破。如 科技 大学郭光灿院士领导的团队与奥地利马库斯·休伯教授合作,成功实现了在高噪声环境下的高维量子通讯;以潘建伟为首的科学团队, 构建了全球首个星地量子通信网 ,实现了跨越4600公里的星地量子密钥分发。
而意大利帕多瓦大学的研究人员,则在2019年就实现了超过20000公里的超远距离单光子交换传输,创造了新的世界纪录,这也证实了微型量子通讯在全球范围内实施的可能性。
从上述介绍可以看出,量子通讯早就已经从实验室推向了 社会 运用,如果还硬要说量子通讯是假的,就是选择性失明,睁开眼睛说瞎话了。
这里多说一句,量子通讯是 基于美国科学家1984年制定的BB84协议和之后改进的BBM92,以及2012形成的MDI-QKD协议,是国际上通用的量子密钥分发协议。其主要目的是 利用量子力学的不确定性原理和量子不可克隆性, 以光子的偏振态作为信息载体来传递密钥, 增加安全通讯的距离。
因此量子通讯与量子纠缠的超距超光速传输的诡异效应没有半分钱关系,如果有人刻意从这方面宣传诱导,将量子通讯神秘化,就有伪科学之嫌了。对此你怎么看?欢迎讨论,感谢阅读。
④ 什么是光量子计算机
量子计算机是指利用量子相干叠加原理,理论上具有超快的并行计算和模拟能力的计算机。
中文名
光量子计算机
研发历程主要部分TA说
研发历程
在光量子计算机领域,中国科学技术大学潘建伟院士、陆朝阳教授领导的团队,研制出一种操控5个粒子(即5个光量子比特)的光量子计算原型机,在完成“玻色取样”任务时,它的速度不仅比国际同行之前所有类似实验的最高纪录加快至少24000倍,同时,通过和经典算法比较,也比人类历史上第一台电子管计算机ENIAC和第一台晶体管计算机TRADIC的运行速度快10倍—100倍。
主要部分
光量子计算机包含3个主要部分。第一部分是单光子源,在零下269摄氏度的低温中,这个设备通过激光激发量子点,每次产生一个高品质的单光子,是国际上最高品质和最高效率的单光子源。“目前我们搭建的这个设备是国际上综合性能最优的,产生的单光子品质比国际第二名要高10到100倍。”陆朝阳自豪地说。
第二部分是超低损耗光量子线路。单光子通过开关分成5路,通过光纤导入主体设备光学量子网络。
第三部分是单光子探测器,探测矩阵中得到的量子计算结果。
⑤ 请教高人指点量子通信都有什么方向
量子通信是基于量子物理理论的具有绝对安全性的一种通信方式,其涉及的技术和理论也非常广泛,题主所关注的方向应该就是量子通信所涉及的专业方向。
从量子通信的工程应用来看,量子通信在实际应用过程中必然需要有源、信道和探测这几个必要的环节,而且其也都是具有量子通信特点的。
源。量子通信按其分类,主要有两种源,一种是高频的单光子源,现在主要是通过将高频的激光脉冲衰减到单光子以下量级来实验,由此高频激光器的研发就是一个专业方向;另一种是纠缠光源,纠缠研究是量子通信热门的方向,也是一个作为前沿研究的专业方向。
信道。量子通信有自由空间和光纤两种远距离传输方式,其结合起来就可以实现全球化的广域量子通信网络。于是量子光和信标光(卫星等移动端需要跟瞄系统)在自由空间信道中的影响、光纤对量子光的相位和偏振(量子通信编码状态)的影响以及其可行的补偿方式在量子通信中是必要的。而在量子通信终端还需要跟瞄系统以及相应的光学系统,其对量子通信的影响和补偿也同样重要。于是,光纤、大气湍流、光学镀膜、光学系统设计、跟瞄系统、自动化控制、卫星工程等光机电专业都是量子通信需要研究的方向。
探测器。光子探测器效率对量子通信相当关键,这本身就是一个很有市场的研究方向,在很多应用中都不可或缺。当然还有跟瞄系统的相机也是自由空间量子通信所必须的。
和工程应用相适应的,这些应用和技术都需要理论的支持,凝聚态物理、物理电子学等专业也都是量子通信相关专业。量子通信是一种大型的应用,其涉及的方面很多,具体可以参考国内中科大、中科院等几个主要单位的具体工作和相关论文。
⑥ 量子通信是否是一个骗局
量子通信并不是一个骗局,是一种通信加密技术。量子在通信过程中仅起到加密作用。
量子通信的概念:
量子通信是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。量子通讯是近二十年发展起来的新型 交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集 编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注。基于 量子力学的基本原理,并因此成为国际上 量子物理和 信息科学的研究热点。
⑦ 量子计算的含义是什么
量子计算是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式。对照于传统的通用计算机,其理论模型是通用图灵机。
通用的量子计算机,其理论模型是用量子力学规律重新诠释的通用图灵机。从可计算的问题来看,量子计算机只能解决传统计算机所能解决的问题,但是从计算的效率上,由于量子力学叠加性的存在,某些已知的量子算法在处理问题时速度要快于传统的通用计算机。
相关信息:
2019年8月,中国量子计算研究获重要进展:科学家领衔实现高性能单光子源。
2021年10月,中科院量子信息与量子科技创新研究院科研团队在超导量子和光量子两种系统的量子计算方面取得重要进展,使中国成为目前世界上唯一在两种物理体系达到“量子计算优越性”里程碑的国家。
⑧ 单个光子为什么具有波动性,非大学物理专业勿回答
LZ您好
光子的波粒二象性是其本质属性
这和它是一个光子还是一堆光子无关
只不过进行单光子研究的时候,体现其波动性的频率和波长难以用传统的物理方式衡量而已。
打个浅显的比方,让你用学生直尺测量一根头发丝直径
但是,单光子源是可以制造的,并且可籍此做双缝干涉,最后产生干涉条纹,依旧可证明单光子具有波动性
⑨ 量子通讯采用单光子传输,单光子该如何被抓住
量子通信还确实便是借助一个个单光子传送,那样才能得到没法破译的安全性。但这一单光子并不是某些人凭生活小常识想象的那般,像捉黄豆那般一个个捉到,再把它根据某类手弹弓类设备发送出来。量子通信的三大关键技术为:单光子源技术性、量子科技编号和无线通信技术、光子无损检测技术。这当中最重要的便是“抓住”单光子,并把它传送出来。
光子实际上并不是真实的粒子,只有称其为“准粒子”,那时候仅仅因为牛顿为了更好地叙述康普顿效应,而提起的概念模型。因为这类实体模型具备粒子效用,因而我们在科学研究一些物理现象时,常常把动能E=hv的一份电磁波称之为光子,进而将问题简单化并开展科学研究。
⑩ 量子力学电子双缝干涉实验简介和一些思考
内容主要来自量子力学科普书《见微知着》
量子力学的经典电子双缝干涉实验证明了粒子具有波粒二象性,是量子力学迄今为止最重要的实验,让我们一起来看一下这个实验。
如图所示,费恩曼设想的理想单电子干涉示意图。最左侧为电子枪,1和2为两条狭缝。当只开启缝1或者缝2时,电子穿过狭缝打到后面的接收屏上的分布曲线分别是P1和P2,当两条缝都开启时,接收屏上电子的分布曲线不是P1和P2简单的相加,而是如最后一个图片下面所标注的公式。
这个实验最令人不可思议的,是当两条缝开启,电子枪单个射出电子,其间间隔足够长的时间,最后得到的电子分布依然如上图所示,好像是先到的电子“规定”后到的电子的行为。
如果觉得上述说明不足以理解,请看下面进一步的说明。
在宏观世界中,以玻璃球为例。我们让玻璃球射过开了一道缝的挡板,大家知道,玻璃球会在后墙留下的痕迹,是一条线。射过开了两条缝隙的挡板,在后墙也是两条线。如下图。
当把玻璃球换成水波的时候,开一条缝,在后墙上也会出现一条线。开了两条缝的,就会出现干涉条纹。如下图。
那么量子世界是咋样的呢?将玻璃球换成电子,通过一条缝隙时候,后墙上只有一条线。如下图。
通过两条缝隙时候,后墙上出现干涉条纹。科学家在想,这么小的电子是如何出现干涉条纹的。他们设计了单电子干涉实验。让一个电子通过一条缝隙,后墙也只出现一条线。可是让人奇怪的是,当开了两条缝隙时候,竟然出现了干涉条纹现象。如下图。
这该怎么解释呢?明明电子一个个射过双缝的。怎么还出现了干涉条纹,难道一个电子同时穿过了两条缝隙? 如下图。
更让人不解的是,当用摄像机试图看着电子的时候,干涉条纹竟然消失了。不看的时候,干涉条纹又出现了。 观测竟然也能影响电子行为? 它知道我们在看它? 如下图。
这就是电子双缝干涉实验,所以费曼说:“电子双缝实验是量子力学的中心区域,研究量子力学,这个问题不可避免。”任何想要重建量子力学的人,也不可能避开这个问题。
结论一:当单个电子一个一个通过双缝后会形成干涉,说明单个电子有波属性。
答案:一个电子可以自相互作用发生干涉,但 一个电子的干涉可以忽略不计,也就是你观测不到。 这是量变到质变的认识。
这意味着对电子双缝干涉条纹现象的研究是群体行为而非个体行为。
答案: 电子不会同时通过两条缝隙。
大多数相信它可以同时穿过两条缝隙的人,都会拿高维度空间来解释,关于平行宇宙,多宇宙,高维度空间等未经证实的理论,在此不讨论。
答案:说明了两条缝隙对产生干涉的必要性,也即说明了 电子干涉和光的干涉现象没有本质区别。
单电子双缝干涉实验电子是一个一个间隔发出的,而经典的光干涉实验发出的是一束光而不是单颗光子,在这点上它们是有区别的。但就干涉而言,它们的本质是一样的。
即然光的干涉和电子干涉本质是一样,那么问题就转化为单电子是波还是粒子?
答案: 单电子具有波的性质,通过自相互作用,发生干涉。 (见本文第四部分的两个新闻证明)
就干涉而言,一定要是波才能行,这是前提条件。单电子具有波的性质意味着,可以用经典的光的波动理论来描述电子双缝实验,这样就不用考虑它究竟是通过哪个缝隙的问题了,因为通过哪个都可以自相互作用发生干涉。就好像一个人跳格子,左一下,右一下,这样就留下了干涉条纹。
答案: 因为波动关系,我们必须要用惠更斯和菲涅尔的光的波动理论来解释。 也就是波动“包络面”“次波”的概念的来理解。
结论二:当观测电子时,干涉消失,表现为粒子属性。
答案: 对实验结果产生影响的不是人的意识。
如果是因为意识,那么人的观测和物体的观测应该有不同的结果,因为物体没有意识。但通过公开的实验信息知道,无论是实验者自己看还是摄像机测,干涉条纹均不会出现。
答案: 电子或者光子不具有自我选择意识。 (见本文第四部分的新闻一证明)
答案(未经实验的推测):目前能想到的合理自洽的解释是, 观测行为影响结果的原因是“有序的定向观测”影响。
在实验中,每一个物体都可以通过辐射来“观测”电子,但这些观测是无序并混乱的。现在有一个开着的摄像机,对着双缝观测,形成一个有序的“定向观测”,影响到了电子的干涉条纹的形成。“定向观测”观测取消,干涉条纹又出现。(如果以开着的摄像机因为通电而有磁场来解释其与其他物体的不同也是说不通的,因为实验室通电的设备不仅有摄像机。)
至于影响的机制,通过场的方式来破坏电子的干涉条纹形成的可能性比较大。(可以通过建一个定向磁场来影响电子双缝实验的方式验证。)
对于观察行为影响结果,可以这样理解:一组“电子”水波,向前走,遇到挡板的两个缝隙,大家知道肯定要发生干涉条纹的。但这个时候,水盆里突然掉入一块石头(观测行为),干扰了干涉条纹的形成,没有这块石头,干涉条纹将会出现。
假设在某大学一个实验室中做这个实验,当实验外有人看着这个实验室时算观测吗?实验室是否隔绝了这样的观测?
答案: 观测距离是有限制的。
目前是这样的认为,实验外面的情况,对实验室内的实验,起不到观测作用。这点可以用观测行为发生作用需要达到一定的辐射能量强度来解释。
只要光通过两条缝隙的实验条件符合,干涉条纹就出现,并不受观测行为影响,但单电子却不同,这是为何?
答案: 光束和一个电子的“稳定性”不同,单个电子对观测能量更加“敏感”。
影响的能量不足以影响到光束形成干涉条纹,但足以影响到电子的干涉条纹形成。这就是量子力学与宏观物理学的区别。
中科大新闻网:中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室李传锋研究组 首次实现了量子惠勒延迟选择实验,制备出了粒子和波的叠加状态 ,极大地丰富了人们对玻尔互补原理的理解。
研究成果作为封面文章发表在9月份的《自然-光子学》上,英国着名量子物理学家Adesso教授和Girolami教授,在同期杂志的《新闻与观察》栏目以《波-粒叠加》为题撰文,高度评价了这一研究成果:“量子惠勒延迟选择实验的实现挑战互补原理设定的传统界限,在一个实验装置中展示光子可以在波动和粒子两种行为之间相干地振荡”。《自然-物理》杂志也以《选择的问题》为题在《研究高亮》栏目报道了该成果,评价该成果“重新定义了波粒二象性的概念”。
量子实验装置的引入,使得人们可以从一个全新的视角来观察世界,就好像给我们安上了一双“量子的眼睛”,能够看到经典探测装置观察不到的物理现象。此项研究工作拓展和加深了人们对玻尔互补原理的理解,揭示了互补原理和叠加原理间的深层次关系,也使得人们对“光是什么”这个萦绕千年的问题有了更进一步的理解。
该项研究受到科技部和国家自然科学基金委的资助。
光是什么?这是个古老的科学问题。三个世纪以来粒子和波的概念就一直是对立的,比如牛顿最初的粒子说和胡克及惠更斯的波动说。现在我们对光的理解可以归结为玻尔的互补原理,即光具有波粒二象性,波动性和粒子性这两种属性即对立又互补,一个实验中具体展示哪种属性取决于实验装置。比如在由两块分束器构成的马赫-曾德干涉仪中,单个光子被第一个分束器分到两个路径上,在第二个分束器所在位置重合。如果我们选择加入第二个分束器,则构成干涉仪,有干涉条纹,观测到波动性,反之如果我们选择不加第二个分束器,则不能构成干涉仪,没有干涉条纹,观测到的是粒子性。马赫-曾德干涉实验是可以用量子力学解释的。
然而存在一种隐变量理论认为,光子是有自由意志的,在进入干涉仪之前光子就察觉到有没有第二个分束器,然后光子根据它察觉到的信息决定自己经过第一个分束器的方式,从而展现粒子性或波动性。
为了检验这种隐变量理论和量子力学孰是孰非,玻尔的学生惠勒于1978年提出了着名的延迟选择实验,即实验者延迟到光子已经完全经过第一个分束器之后再选择加不加第二个分束器。在经典的惠勒延迟选择实验中,探测光的波动性和粒子性的实验装置,即加与不加第二个分束器,是相互排斥的,因此光的波动性和粒子性不能够同时展现出来。
李传锋研究组设计出了量子实验装置,巧妙地利用偏振比特的辅助来控制测量装置,使得测量装置处于探测波动性与探测粒子性的两种对立状态的量子叠加态上。他们利用自组织量子点产生的确定性单光子源作为输入, 实现了量子的惠勒延迟选择实验,排除了光子有自由意志的假设,并首次观测到了光的波动态与粒子态的量子叠加状态。
实验结果显示,处于波粒叠加态上的光子,既不象普通的粒子态那样没有干涉条纹,也不象普通的波动态那样表现出标准的正弦形干涉条纹,而是展现出锯齿形条纹这样一种“非波非粒,亦波亦粒”的表现形式。
2015年澳大利亚一个研究小组也获得光同时表现出波粒二象性的单个快照,新闻也摘录如下:据澳大利亚spacedaily网站2015年3月3日报道,量子力学告诉我们:光可以同时表现波粒二象性。然而,人类迄今为止还从未在实验上同时拍摄到光的波粒二象性;最多我们能看到光波动性和或粒子性,但总是在不同时间。
通过采用完全不同以往的实验方法,瑞士洛桑联邦理工学院(EPFL)的科学家们第一次从实验上同时拍摄到光波粒二象性的快照。这项突破性研究成果发表在《自然通讯》杂志上。
Fabrizio Carbone说:“这项实验有史以来第一次证明,我们可以直接拍摄量子力学及其矛盾属性。”
此外,这项开创性工作的重要性在于它可以扩展基础科学到未来技术。正如Carbone解释说:“能够像这样在纳米尺度对量子现象进行成像和控制,开辟了迈向量子计算的新途径。”
当紫外光线照射金属表面时,它导致电子发射。阿尔伯特 爱因斯坦这样解释“光电效应”:光原本认为仅仅是一种波,其实它也是一束粒子流。虽然各种实验已经成功观察到了光的波动性和粒子性行为,但是它们从未被同时观测到。
EPFL的Fabrizio Carbone领导的一个研究小组,利用一个巧妙的方法完成了一项实验:使用电子来使光成像。研究人员有史以来第一次,获得光同时表现出波粒二象性的单个快照。
实验这样设置的: 一束激光脉冲照射在微小的金属纳米线上。激光使纳米线中的带电粒子能量增加,引起它们振动。
光沿着这根小小的纳米线在两个可能的方向上传输,就像公速路上的汽车。当沿相反方向传输的光波相遇时,它们会形成驻波(stand wave)。这里,驻波成为实验的光源,在纳米线周围辐射。
实验的巧妙之处在于:科学家们在纳米线附近发射一束电子流,利用它们来使光的驻波成像。因为电子与限制在纳米线中的光相互作用,因此,电子会加速或减速。利用超快显微镜对电子速度发生变化的位置成像,Carbon的团队现在可以使这个作为光波动性指纹的驻波可视化。
这种现象说明光的波动性,同时它也证明了光的粒子性。当电子在很接近光驻波的地方传输时,它们与光粒子,即光子发生碰撞。
如上文所述,这会影响电子的速度,使它们移动得更快或更慢。这种速度变化表现为电子和光子之间能量“包”(量子)的交换。这些能量包之间的交换,表明纳米线中的光是一种粒子。