当前位置:首页 » 股票股评 » 风险中性定价法可以为股票定价吗
扩展阅读
设计总院股票历史股价 2023-08-31 22:08:17
股票开通otc有风险吗 2023-08-31 22:03:12
短线买股票一天最好时间 2023-08-31 22:02:59

风险中性定价法可以为股票定价吗

发布时间: 2022-12-14 06:36:52

⑴ 期权风险中性定价

很多小伙伴在学金融工程时,必然会遇到这样一个问题是 为什么在期权定价中可以使用风险中性定价

但追根究底地说,

风险中性不是假设,而是推论。
风险中性不是假设,而是推论。
风险中性不是假设,而是推论。

而这篇文章,就带着你将这个推论一步一步地推导出来。

所谓的期权风险中性定价法,即在风险中性测度 下,推导得到期权的价值为 ,即

其中, 为 时刻的无风险利率, 为 时刻的 代数, 则为期权在 时刻到期时支付的现金流。(例如,对于常见的欧式看涨期权, )

特别的,在 的情况下

细心的同学可以发现, 是定义在 上的变量,而 则是一个常量。而这个常量的值,正是我们希望得到的期权在 时刻的价值。

所以我们的问题就进一步转化为了对上述公式的证明。

如果不用数学公式来回答的话,那么答案可以概述为:

现在我们开始一步步展开,并配合数学公式来解释回答这个问题。

假设目前有两个资产,分别是 股票 和 现金账户 ,

其中 是现实测度 下的标准布朗运动

如果变换测度到 下,则上述公式转化为

其中 是风险中性测度 下的标准布朗运动。

看到这里你可能会有疑惑,怎么突然就用到了测度转换了。别着急,这在文章后半部分 “为什么要用风险中性” 中就会给出解释。

所谓的风险中性测度,只是众多可变换的测度中的一种,例如,我们亦可以将测度转化为远期测度(Forward measure)进行定价,当然这是后话。

而提到测度,就不得不提及计价单位(Numeraire)这个概念,引用吴立新教授《Interest Rate Modeling Theory and Practice》一书的原话来说,即

把它翻译到我们这个案例里:

理解了何为风险中性测度后(what),剩下的问题就是 why 和 how

直接的回答就是前文提及到的风险中性定价法在金融上的解释:

该组合需要具备有两个非常重要的性质

而利用风险中性测度,就能找到这样的一个资产组合。

假设我们已经利用了风险中性测度完成了对股票价格运动过程的转换,即

那么股票以无风险资产(现金账户)作为计价单位的价格运动可以记为

根据伊藤公式可以展开为

因为 是风险中性测度 下的标准布朗运动,故而 在测度 下是一个鞅,记为 。而 是 才能引出后文的 Martingale Representation Theorem .

因为 是定义在 上的变量,同样的, 和 也是。

故而,我们可以定义一个新的变量 ,

可以视为 投影到 空间上的变量,且很容易地可以看出 也是一个 ,证明如下:

根据 Martingale Representation Theorem ,因为 和 都是定义在同一测度空间上的变量,故而必然存在这么一个 ,使得

于是我们得以确定了这个 ,而这也是整个定理逻辑的核心。因为我们可以根据这个 开始构建我们的投资组合:

其中 ,故而这个组合的折现价值为

进一步观察可以发现

由以上公式可以得到这个组合拥有我们要找的两个特质

当一个资产组合具备这两个特质的时候,我们便可以推出,该资产组合和期权拥有一样的价值,否则就回存在套利机会。

这就引出了最重要的结论:

是的,重复一遍

将 展开成指数形式,可以得到我们的最终结论

至此,推导结束,情理之中、意料之外地得到了风险中性定价公式。 :)

这部分知识在大部分随机过程的书本上都有提及,维基网络 Girsanov theorem 也有较为详细的说明,所以此处就不赘述了。

特别地,在学习测度转换的过程中,给我启发最大的是这样一个方程

启发在于,测度的转化,类似于将其每个事件元素的概率进行了一定的调整。

所以,如果说 是一个 ,那么 就是 。

而找到了这个 ,就等于找到了测度转换的答案。

至此,整个证明过程结束了。不知小伙伴有没有消化了呢,欢迎Email或留言交流。

Ps. 近期我会开始更新这个博客,求关注哦 :P

⑵ 求教风险中性定价原理的意思!!!

风险中性定理表达了资本市场中的这样的一个结论:即在市场不存在任何套利可能性的条件下,如果衍生证券的价格依然依赖于可交易的基础证券,那么这个衍生证券的价格是与投资者的风险态度无关的。这个结论在数学上表现为衍生证券定价的微分方程中并不包含有受投资者风险态度的变量,尤其是期望收益率。

风险中性价原理是Cox. Ross(1976)推导期权定价公式时建立的。由于这种定价原理与投资者的风险制度无关,从而推广到对任何衍生证券都适用,所以在以后的衍生证券的定价推导中,都接受了这样的前提条件,就是所有投资者都是风险中性的,或者是在一个风险中性的经济环境中决定价格,并且这个价格的决定,又是适用于任何一种风险志度的投资者。

关于这个原理,有着一些不同的解释,从而更清淅了衍生证券定价的分析过程。首先,在风险中性的经济环境中,投资者并不要求任何的风险补偿或风险报酬,所以基础证券与衍生证券的期望收益率都恰好等于无风险利率;其次,正由于不存在任何的风险补偿或风险报酬,市场的贴理率也恰好等于无风险利率,所以基础证券或衍生证券的任何盈亏经无风险利率的贴现就是它们的现值;最后,利用无风险利率贴现的风险中性定价过程是鞅(Martingle)。或者现值的风险中性定价方法是鞅定价方法(Martingale Pricing Technique)。

为了更清晰的了解风险中性定价原理和上述解释的意义,这里回到Black-Scholes公式的推导,当然这个推导是Cox. Ross(1976)的工作。

假定基础证券为股票,衍生证券为股票期权,它们的价格分别为S与C,作为两个随机变量,同时遵循下述随机动态方程:

(9)

(10)

这里 与表示期权的期望收益率以及它的方差。而且C(S.t)是s与t的函数,同样由I+O引理可知:

(11)

比较(10)与(11)式,我们得到:

(12)

(13)

改写(12)式,可知:

(14)

注意这个(14)式,它和Black-Scholes推导的微偏分方程非常相似,但它却包含了两个参数与。为了求解方程(14),或者设法先解出与,或者设法使==回归到方程(8)的形式。

为此,重新使用一下无风险套期保值的方法,即同样构造一个资产组合π,它如下组成:

s个单位 Call的空头部位

c·c个单位 股票的多头部位

这个资产组合π的价值为:

π=·c·s-·s·c=(-)sc (15)

同样,这个资产组合价值上的微小变动,都是由瞬间的价格变动所引起的,因此:

dπ=(-)·cs·dt (16)

现在在dπ中,所有的随机微分项都消除了,所以π是特征为无风险,在非套利条件下,它必定获取的是无风险收益率,或无风险利率,我们有:

dπ=πdt (17)

-=(-)

(18)

方程(18)具有很清晰的意义,我们把-与-看成是期权以及它的基础证券(股票)的超额收益,在除以各自的方差(即波动性)之后恰好为单位风险的市场价格。因为在无风险套期保值的资产组合π中,期权及股票都是市场上可交易的证券,所以它们为单位风险的价格应当是相等的。

最后,我们将(18)改写为:

(19)

这样,把(12)与(13)代入(19)式,又回到了我们所熟悉为Black-Scholes的偏微分方程:

(20)

如果我们现在对照(14)与(20),这个推导过程就如同我们在方程(14)直接令==。寻样,但我们不能这样做,因为==只是风险中性定价原理的结果,或者说是风险中性定价原理的解释。

风险中性定价原理在数学上可以表示为:

(21)

(22)

这里ST与CT都是随机变量,分别表示到期日的股票价格与期权价格,因为到期日Call的收益为CT=max(ST-X、O),所以方程(22)可写为:

(23)

在方程(21)与(23)中,E是同一个期望算符。这是关于经过风险中性调整的概率分布的期望值,而且这个调不整的概率分布是对数正整的,它的漂移率刚好也是无风险利率。所以(23)也指出了,Call的价值等于风险中性条件下到期收益的贴现期望值,贴现率也刚好是无风险利率。

这样通过类似于Cox与Ross的推导,完全的给出了风险中性定价原理的解释

⑶ 风险中性定价原理

风险中性意味着在无风险条件下持有货币财富的效用等于在风险条件下持有货币财富的效用。

风险中性首先是一种风险态度,它与风险偏好和风险厌恶相关。

国家外汇管理局:坚持“风险中性”理念

⑷ 所有的金融资产都能用风险中性定价的原理去进行定价吗

关于这个问题,我可以简单粗暴的回答各位,因为风险中性意味着投资者不关心风险。当资产的预期损益以无风险利率折现时,他们对风险资产和无风险资产的偏好是相同的,真正的投资者是风险中性的吗? 关于这个问题,我只能说,肯定不是,否则,投资策略为什么要比较夏普比率而担心最大的回撤?

一、是否存在自融资的初值价值跟结构?

如果我们用一个离谱的假设去判断后续的波动,那么我个人试问各位,我们导出这样的公式有什么用呢?无论我们使用原始副本组合概念来求解 PDE,还是后来通过测量变化,通过 SDE 找到期望值,都不会使用该假设,不用说,复制组合的概念从来没有提到过风险中性的概念,更重要的是,现在为 quant 求解偏微分方程仍然是一件大事,因为不管是解析解还是数值解,物理学早就被彻底研究过了。

⑸ 无套利定价方法与风险中性定价方法的联系与区别是什么

一、区别在于两种定价方法思路不同
无套利定价法的思路:其基本思路为:构建两种投资组合,让其终值相等,则其现值一定相等;否则的话,就可以进行套利,即卖出现值较高的投资组合,买入现值较低的投资组合,并持有到期末,套利者就可赚取无风险收益。 
风险中性定价法的基本思路: 假定风险中性世界中股票的上升概率为P,由于股票未来期望值按无风险利率贴现的现值必须与股票目前的价格相等,因此可以求出概率P。然后通过概率P计算股票价格
二、联系
总的来说两种种定价方法只是思路不同,但是结果是一样的,并且风险中性定价法是在无套利分析的基础上做出了所有投资者都是风险中性的假设。

⑹ 如何用风险中性定价法计算期权的价值

二叉树定价U=42/40=1.05 D=38/40=0.95 c+=max(42-39 0)=3 c-=max(38-39,0)=0
z=(1+0.08-0.95)/(1.05-0.95)=1.3
c=3*1.3/(1+0.08)=3.6元