当前位置:首页 » 股票股评 » 康普顿股票股吧
扩展阅读
设计总院股票历史股价 2023-08-31 22:08:17
股票开通otc有风险吗 2023-08-31 22:03:12
短线买股票一天最好时间 2023-08-31 22:02:59

康普顿股票股吧

发布时间: 2022-09-26 13:22:53

‘壹’ 原油板块股票有哪些

原油概念股有:
1.广汇能源600256
公司已形成以煤炭、LNG、醇醚、煤焦油、石油为核心产品,以能源物流为支撑的天然气液化、煤炭开采、煤化工转换、油气勘探开发四大业务板块,成为集上游煤炭和油气勘探生产,中游能源运输和物流中转,下游销售于一体的大型能源上市公司,也是国内目前唯一一家同时具有煤、油、气三种资源的民营企业。从近三年ROE来看,近三年ROE复合增长为-19.4%,过去三年ROE最低为2020年的8.16%,最高为2018年的12.56%。
2.康普顿603798
目前车用润滑油市场供给现状较为分散,全国近2000家润滑油供应商,包括跨国企业美孚、壳牌、嘉实多,中石油和中石化的“昆仑”和“长城”以及各类民营企业,以康普顿为代表的部分大型民营企业采取差异化战略,进攻高端产品市场,其他各类民营润滑油企业,其产品产量、质量与认证等级水平较低,行业集中度有待提高。从近三年ROE来看,近三年ROE复合增长为12.51%,最高为2020年的11.14%。
3.恒逸石化000703
全球领先的PTA-聚酯纤维综合制造商之一;已打造“原油-PX-PTA-涤纶”和“原油-苯-CPL-锦纶”的“柱状”均衡一体化产业链;参控股PTA产能1350万吨/年,约占19年底全国有效PTA产能的27.56%,已投建拟新增PTA产能600万吨/年;2019年,PTA销量503.64万吨,收入114.79亿元,占比14.42%。从近三年ROE来看,近三年ROE复合增长为-3.22%,过去三年ROE最低为2020年的12.56%,最高为2019年的14.73%。
4.美尔雅600107
从近三年ROE来看,近三年ROE复合增长为256.57%,过去三年ROB最低为2018年的1.54%,最高为2020年的19.58%。

‘贰’ 国产机油品牌有哪些

最主流的,是“两桶油”旗下的机油品牌,也就是中石油旗下的昆仑,和中石化旗下的长城品牌。这是国内自主机油里最常见的了。
然后龙蟠机油作为股票上市企业,也是巨无霸。无论产量和企业规模。也算是一个比较主流的正规牌子。
当然,国内的机油品牌还有很多,比如给天津一汽配套的奥吉娜、被壳牌吞并的统一、给南极科考队配套的康普顿等等。

‘叁’ 中国润滑油十大品牌排行榜是什么

中国润滑油十大品牌排行榜:Shell壳牌、Mobil美孚、长城润滑油SINOPEC、昆仑KunLun、Castrol嘉实多、加美Jama、TOTAL道达尔、中能高科ZOONON、Kroneseder柯赛德、Fuchs福斯,这是从知名度和客户反馈都很好,下面介绍几款:

1、壳牌

品牌介绍:"壳牌"最初是Marcus Samuel and Company 向远东地区运输的煤油的商标。壳牌最初主要从事古玩、古董和东方贝壳业务。

1897年Samuel成立了壳牌运输和贸易公司。荷兰皇家石油公司和壳牌运输和贸易公司于 1907 年合并时,后者的品牌名称和标志(壳牌和贝壳)成为新成立的荷兰皇家壳牌集团的简明名称和标志。此后一直保持至今。目前壳牌是中国十大润滑油品牌之一,同时也是全球化的能源和化工集团。

2、美孚

品牌介绍:埃克森美孚公司是世界知名的石油天然气公司,其历史始于1882年约翰·洛克菲勒创建的标准石油公司,至今已跨越了130多年的历程。早在1892年,埃克森美孚的前身——标准石油就来到中国,在上海设立了销售煤油的办事处,推出的“美孚灯”为无数中国家庭带来光明。

埃克森美孚拥有丰富的油气资源储量,是炼油商和润滑油基础油生产商,以及成品润滑油销售商,1974年,埃克森美孚在全球推出了全合成车用润滑油——美孚1号。40多年来,美孚品牌系列润滑油产品以其卓越性能和不断的技术创新,备受众多的消费者的青睐。

3、长城润滑油

品牌介绍:长城润滑油是北京市着名商标,同时是合成制动液行业标准制订参与者,不仅是中国十大润滑油品牌之一,更是世界知名的润滑油产销集团。

长城润滑油拥有世界一流水平的全自动调合及包装生产线,可生产内燃机润滑油、工业齿轮油、液压油等21大类2000多种产品,实现了海陆空的全方面体系覆盖,是载人航空、航天、远洋运输、高速铁路、国防军工等高端领域的紧密参与者和支持者。

购买要点:

1、容器的清洁

润滑油的品质与保存、运输中的物化条件密切相关,而最大的问题是不同油品之间的交叉污染,尤其是分装和使用新容器的时候。应该特别注意容器的清洁度问题。

2、要求竞标单位提供资质材料

要求各竞标单位提供营业执照、生产许可证、质量认证(如ISO9001认证)证书、产品的各项认证材料(如国内外权威部门的认证、国家知名品牌证书、国家免检证书、其他企业的使用证明等)、企业的性质(如国营、民营、外企或合资等)和企业业绩等。

‘肆’ 听说康普顿润滑油可以无机油行驶5050公里,太不可思议了吧!

这个并不是真的让你不用机油去行车,只是想告诉你:康普顿纳米陶瓷机油这款产品具有极强的抗磨、修复能力。

‘伍’ 证券股票市值最小的是那三只

到目前为止沪深两大证券交易所中总市值最小的前三名是科隆精化、赛福天、兰州黄河,都不到24亿。流通市值最小的前三名是赛福天、康普顿、沃施股份,都不到7.5亿。

‘陆’ 大胆假设:人类怎样都会灭亡吧不论将来的科技怎样…

[编辑本段]【形成】
宇宙射线(cosmic ray)一般指约在46亿年前刚从太阳星云形成的地球。初生的地球,固体物质聚集成内核,外周则是大量的氢、氦等气体,称为第一代大气[1]。
那时,由于地球质量还不够大,还缺乏足够的引力将大气吸住,又有强烈的太阳风(是太阳因高温膨胀而不断向外抛出的粒子流,在太阳附近的速度约为每秒350~450公里),所以以氢、氦为主的第一代大气很快就被吹到宇宙空间。地球在继续旋转和聚集的过程中,由于本身的凝聚收缩和内部放射性物质(如铀、钍等)的蜕变生热,原始地球不断增温,其内部甚至达到炽热的程度。于是重物质就沉向内部,形成地核和地幔,较轻的物质则分布在表面,形成地壳。
初形成的地壳比较薄弱,而地球内部温度又很高,因此火山活动频繁,从火山喷出的许多气体,构成了第二代大气即原始大气。
原始大气是无游离氧的还原性大气,大多以化合物的形式存在,分子量大一些,运动也慢一些,而此时地球的质量和引力已足以吸住大气,所以原始大气的各种成分不易逃逸。以后,地球外表温度逐渐降低,水蒸汽凝结成雨,降落到地球表面低凹的地方,便成了河、湖和原始海洋。当时由于大气中无游离氧(O2),因而高空中也没有臭氧(O3)层来阻挡和吸收太阳辐射的紫外线,所以紫外线能直射到地球表面,成为合成有机物的能源。此外,天空放电、火山爆发所放出的热量,宇宙间的宇宙射线(来自宇宙空间的高能粒子流,其来源目前还不了解)以及陨星穿过大气层时所引起的冲击波(会产生摄氏几千度到几万度的高温)等,也都有助于有机物的合成。但其中天空放电可能是最重要的,因为这种能源所提供的能量较多,又在靠近海洋表面的地方释放,在那里作用于还原性大气所合成的有机物,很容易被冲淋到原始海洋之中。
宇宙射线产生
太阳系是在圆盘状的银河系中运行的,运行过程中会发生相对于银河系中心位置的位移,每隔6200万年就会到达距离银河系中心的最远点。而整个“银河盘”又是在包裹着它的热气体中以每秒200公里的速度运行。“银河盘并不像飞盘那样圆滑,”科学家称,“它是扁平的。”当银河系的“北面”或前面与周围的热气摩擦时就会产生宇宙射线。
[编辑本段]【研究】
出于对宇宙射线研究的重视,世界各国纷纷投入资金与设备对其展开研究。前苏联、日本、中国、美国、法国等国家相继建立了宇宙射线观测站。虽然宇宙射线的起源尚无定论,但科学家们仍然逐步了解了宇宙射线的种种特性,以及对地球和人类环境的影响。
我们知道,宇宙线主要是由质子、氦核、铁核等裸原子核组成的高能粒子流;也含有中性的珈玛射线和能穿过地球的中微子流。它们在星系际银河和太阳磁场中得到加速和调制,其中一些最终穿过大气层到达地球。人类对宇宙射线作微观世界的研究过程中采用的观测方式主要有三种,即:空间观测、地面观测、地下(或水下)观测。
为了有效和长期对宇宙射线进行观测,各国都相继建立了观测站。1943年,前苏联在亚美尼亚建立了海拔3200米的阿拉嘎兹高山站;日本在战后建立了海拔2770米的乘鞍山观测所;1954年我国建立了海拔3200米的云南东川站。1990年,中日双方共同合作建立了西藏羊八井宇宙射线观测站。几乎所有外来的高能宇宙线,除中微子外在穿过大气层时都要与大气中的氧、氮等原子核发生碰撞,并转化出次级宇宙线粒子,而超高能宇宙线的次级粒子又将有足够能量产生下一代粒子,如此下去,将会产生一个庞大的粒子群;这一现象是1938年由法国人奥吉尔在阿尔卑斯山观测发现的,并取名为“广延大气簇射”。
在广延大气簇射过程中,能量低于10的14次方电子伏特的粒子很难到达3000米以下的低空,而是在4000米处超高能粒子群发展到极大。由于西藏羊八井地处海拔4300米,终年无积雪,地势平坦开阔,在能源、交通及生活上都具有便利条件,科研人员可在此进行长年不间断观测。 以羊八井的闪烁体探测器为例,当粒子穿过闪烁体时在其中损失能量使闪烁体发生荧光,这一束闪光经过光阴极转换和光电倍增管放大后变为一个电脉冲信号。这个信号经过电缆被送到电子学记录系统,由磁带进行全年不间断记录。同时我们可以想到,如果我们在单位面积上安装的闪烁体越多、密度越大;所接收的射线粒子也越多,记录就更精密。除闪烁体探测器以外,羊八井站建成的宇宙射线采集方式还有:80平米乳胶室和地方性簇射探测器;中子堆中中子望远镜;试验型50平米RPC地毯式探测器。
宇宙射线还存在着转化、簇射的过程。除中微子外,几乎所有的高能宇宙射线,在穿过大气层时都要与大气中的氧、氮等原子核发生碰撞,并转化出次级宇宙线粒子,而超高能宇宙线的次级粒子又将有足够能量产生下一代粒子,如此下去,一级一级的转化,将会产生一个庞大的粒子群。1938年,法国人奥吉尔在阿尔卑斯山观测发现了这一现象,并将其命名为“广延大气簇射”。
[编辑本段]【影响】
虽然当宇宙射线到达地球的时候,会有大气层来阻挡住部分的辐射,但射线流的强度依然很大,很可能对空中交通产生一定程度的影响。比方说,现代飞机上所使用的控制系统和导航系统均有相当敏感的微电路组成。一旦在高空遭到带电粒子的攻击,就有可能失效,给飞机的飞行带来相当大的麻烦和威胁。
还有科学家认为,长期以来普遍受到国际社会关注的全球变暖问题很有可能也与宇宙射线有直接关系。这种观点认为,温室效应可能并非全球变暖的惟一罪魁祸首,宇宙射线有可能通过改变低层大气中形成云层的方式来促使地球变暖。这些科学家的研究认为,宇宙射线水平的变化可能是解释这一疑难问题的关键所在。他们指出,由于来自外层空间的高能粒子将原子中的电子轰击出来,形成的带电离子可以引起水滴的凝结,从而可增加云层的生长。也就是说,当宇宙射线较少时,意味着产生的云层就少,这样,太阳就可以直接加热地球表面。对过去20年太阳活动和它的放射性强度的观测数据支持这种新的观点,即太阳活动变得更剧烈时,低空云层的覆盖面就减少。这是因为从太阳射出的低能量带电粒子(即太阳风)可使宇宙射线偏转,随着太阳活动加剧,太阳风也增强,从而使到达地球的宇宙射线较少,因此形成的云层就少。此外,在高层空间,如果宇宙射线产生的带电粒子浓度很高,这些带电离子就有可能相互碰撞,从而重新结合成中性粒子。但在低空的带电离子,保持的时间相对较长,因此足以引起新的云层形成。
此外,几位美国科学家还认为,宇宙射线很有可能与生物物种的灭绝与出现有关。他们认为,某一阶段突然增强的宇宙射线很有可能破坏地球的臭氧层,并且增加地球环境的放射性,导致物种的变异乃至于灭绝。另一方面,这些射线又有可能促使新的物种产生突变,从而产生出全新的一代。这种理论同时指出,某些生活在岩洞、海底或者地表以下的生物正是由于可以逃过大部分的辐射才因此没有灭绝。从这种观点来看,宇宙射线倒还真是名副其实的“宇宙飞弹”。
[编辑本段]【意义】
今天,人类仍然不能准确说出宇宙射线是由什么地方产生的,但普遍认为它们可能来自超新星爆发、来自遥远的活动星系;它们无偿地为地球带来了日地空间环境的宝贵信息。科学家希望接收这些射线来观测和研究它们的起源和宇观环境中的微观变幻。
宇宙射线的研究已逐渐成为了天体物理学研究的一个重要领域,许多科学家都试图解开宇宙射线之谜。可是一直到现在,人们都并没有完全了解宇宙射线的起源。一般的认为,宇宙射线的产生可能与超新星爆发有关。对此,一部分科学家认为,宇宙射线产生于超新星大爆发的时刻,“死亡”的恒星在爆发之时放射出大能量的带电粒子流,射向宇宙空间;另一种说法则认为宇宙射线来自于爆发之后超新星的残骸。
不管最终的定论将会如何,科学家们总是把极大的热情投入到宇宙射线的研究中去。关于为什么要研究宇宙射线,罗杰·柯莱在其着作《宇宙飞弹》作出了精辟的阐释:
“宇宙射线的研究已变成天体物理学的重要领域。尽管宇宙射线的起源至今未能确定, 人们 已普遍认为对宇宙射线的研究能获得宇宙绝大部分奇特环境中有关过程的大量信息:射电星系、类星体以及围绕中子星和黑洞由流入物质形成的沸腾转动的吸积盘的知识。我们对这些天体物理学客体的理解还很粗浅,当今宇宙射线研究的主要推动力是渴望了解大自然为什么在这些 天体上能产生如此超常能量的粒子。”
[编辑本段]【研究历史】
1903年,卢瑟福(Ernest Rutherford,1871-1937)(左图)和库克(H.L.Cooke)研究过这个问题。他们发现,如果小心地把所有放射源移走,在验电器中每立方厘米内,每秒钟还会有大约十对离子不断产生。他们用铁和铅把验电器完全屏蔽起来,离子的产生几乎可减少十分之三。他们在论文中提出设想,也许有某种贯穿力极强,类似于γ射线的辐射从外面射进验电器,从而激发出二次放射性。
1909年,莱特(Wright)为了搞清这个现象的缘由,在加拿大安大略(Ontario)湖的冰面上重复上述实验,发现游离数略有减小。
1910年,法国的沃尔夫(Father Theodor Wulf)在巴黎300米高的埃菲尔塔顶上进行实验,比较塔顶和地面两种情况下残余电离的强度,得到的结果是塔顶约为地面的64%,比他预计的10%要高。他认为可能在大气上层有γ源,也可能是γ射线的吸收比预期的小。
1910-1911年,格克耳(Alfred Gockel)在瑞士的苏黎世让气球把电离室带到4500米高处,记录下几个不同高度的放电速率。他的结论是:“辐射随高度的增加而降低的现象……比以前观测到的还要显着。”
这种源的放射性与当时人们比较熟悉的放射性相比具有更大的穿透本领,因此人们提出这种放射性可能来自地球之外——这就是宇宙射线最初的迹象。
奥地利物理学家赫斯(Victor Franz Hess,1883-1964)是一位气球飞行的业余爱好者。他设计了一套装置,将密闭的电离室吊在气球下,电离室的壁厚足以抗一个大气压的压差。他乘坐气球,将高压电离室带到高空,静电计的指示经过温度补偿直接进行记录。他一共制作了十只侦察气球,每只都装载有2~3台能同时工作的电离室。
1911年,第一只气球升至1070米高,在那一高度以下,辐射与海平面差不多。翌年,他乘坐的气球升空达5350米。他发现离开地面700米时,电离度有些下降(地面放射性造成的背景减少所致),800米以上似乎略有增加,而后随着气球的上升,电离持续增加。在1400米~2500米之间显然超过海平面的值。在海拔5000米的高空,辐射强度竟为地面的9倍。由于白天和夜间测量结果相同,因此赫斯断定这种射线不是来源于太阳的照射,而是宇宙空间。
赫斯认为应该提出一种新的假说:“这种迄今为止尚不为人知的东西主要在高空发现……它可能是来自太空的穿透辐射。”1912年赫斯在《物理学杂志》发表题为“在7个自由气球飞行中的贯穿辐射”的论文。
赫斯的发现引起了人们的极大兴趣,从那时开始,科学界对宇宙射线的各种效应和起源问题进行了广泛的研究。最初,这种辐射被称为“赫斯辐射”,后来被正式命名为“宇宙射线”。当时,许多物理学家怀疑赫斯的测量,并认为这种大气电离作用不是来自太空,而是起因于地球物理现象,例如组成地壳的某种物质发出的放射性。现在认为,宇宙线是来自宇宙空间的高能粒子流的总称。
1914年,德国物理学家柯尔霍斯特(Werner Kolhorster,1887-1946)将气球升至9300米,游离电流竟比海平面大50倍,确证了赫斯的判断。
1922年,美国科学家密立根(Robert Andrews Millikan,1868-1953)(左图)和玻恩(I.S.Bowen)将这些实验拿到55000英尺的高空去做,为了解决这种辐射的来源,他们先是在高山顶上测量,后来又把装有验电器和电离器的不载人的气球升到高空来测量大气的电离作用。
1925年夏,密立根和助手们在加利福尼亚州群山中的Muir湖(缪尔湖)和Arrowhead湖(慈菇湖)的深处做实验,试图通过测量电离度与湖深的变化关系来确定宇宙射线的来源,之所以选择这两个湖,是因为它们都是由雪水作为水源,可以避免放射性污染;而且,这两个湖相距较远,高度相差6.675英尺,这样可以避免相互干扰和便于比较。
1925年11月9日,国家科学院在威斯康星州的Madison召开会议,密立根报告了测量的结果,他的结果表明,这些射线不是起源于地球或低层大气,而是从宇宙射来的,密立根同意当时大多数人的观点,认为宇宙射线是一种高频电磁辐射,其频率远高于X射线,是后者平均频率的1000倍。他认为,这种射线的穿透力既然比最硬的γ射线还强许多,当然不会由带电粒子组成。如果假定宇宙射线真是像阴极射线那样的带电粒子流,那它能穿透相当于6英尺厚度铅块的穿透力,将使这些粒子具有当时难以想象的高能量。如果假定宇宙射线由光子(即电磁辐射的量子)组成,那么宇宙射线辐射到地球时,其飞行路线将不受地磁的影响;相反,如果宇宙射线是由带电粒子组成,则它将肯定受到地磁场的影响,飞到高纬度地区的宇宙射线带电粒子将多于低纬度的地区,即有“纬度效应”(latitude effect),而密立根的测量结果表明,宇宙射线来自四面八方,不受太阳和银河系的影响,也不受大气层或地磁纬度的影响。
1927年,斯科别利兹(Dimitr Skobelzyn)利用云雾室摄得宇宙射线痕迹的照片,根据径迹在云雾室里的微小偏转,第一次确认了宇宙线粒子径迹。
1927-1929年,荷兰物理学家克莱(J.Clay,1882-1955)在从荷兰到印度尼西亚爪哇岛的旅行中,发现了纬度效应的踪迹——靠近赤道处宇宙射线强度比较低。
博思(Walther Bothe,1891-1957)提出的符合计数法是在盖革计数器的基础上发展起来的,他所做的革新是利用两个计数管,使得只有电离碰撞在两个计数管中同时发生时,这两个计数管才会计数。他利用符合法来判断能量和动量守恒定律对光子和电子的每一次碰撞是否都有效,或者说这些定律是否是作为一种统计平均才成立。为了利用计数器研究被散射的α粒子和反冲电子之间是否符合,他与盖革考察了单个的康普顿散射,得到的结论是:能量和动量守恒定律对光子和电子之间的每一次碰撞都是有效的。从此,符合法在宇宙线的研究中得到了广泛应用。1930年前后,宇宙线领域里的一些重要发现几乎都和符合法分不开。符合法的发明也为核物理、α射线和超声波等方面的研究提供了有效工具。博思与玻恩共同分享了1954年度诺贝尔物理学奖。
1931年秋季,在罗马召开的国际核物理会议上,物理学家们向密立根提出的宇宙射线的电磁本质假说发起了公开的挑战。意大利物理学家罗西(Bruno Benedetto Rossi,1905-1993)(右图)在分析大量实验数据的基础上提出:从海平面观察到的宇宙线,本质上是由能量非常高的带电粒子组成;从强磁场使其偏转显示的结果来看,它们的能量大约高于几十个亿电子伏,远大于密立根的估计值。这些带电粒子也许是在大气层中,由宇宙辐射源初始的高能γ辐射产生的,但这种γ辐射(即光子)的能量远远高于密立根所说的“原子构造”时释放的能量。还有第二种可能,即宇宙线中观察到的高能粒子就是最初的宇宙辐射,或者至少是它有意义的一部分。
密立根让研究生安德逊利用强磁场中的云室,直接测量宇宙射线的能量,但安德逊的工作却否定了密立根的假说,还导致了正电子的发现。
1932年,C.D.安德森(Carl David Anderson, 1905-1991)(左图)发现了正电子,这是宇宙射线研究的第一项引人注目的成果。
C.D.安德森是美国加州理工学院物理教授密立根(R.A.Millikan)的学生,从1930年开始跟密立根做宇宙射线的研究工作。从1930年起C.D.安德森负责用云室观测宇宙射线。安德森采用一个带有非常强磁铁的威尔逊云室来研究宇宙射线。他让宇宙射线中的粒子通过室内的强磁场,并快速拍下粒子径迹的照片,然后根据径迹长度、方向和曲率半径等数据来推断粒子的性质。
1932年8月2日,C.D.安德森在照片中发现一条奇特的径迹,这条径迹和负电子有同样的偏转度,却又具相反的方向(右图),显示这是某种带正电的粒子。从曲率判断,又不可能是质子。于是他果断地得出结论,这是带正电的电子。狄拉克预言的正电子就这样被安德森发现了。
当时C.D.安德森并不了解狄拉克的电子理论,更不知道他已经预言过正电子存在的可能性。狄拉克是在他的相对论电子理论中作出这一预言的。从他的方程式可以看出,电子不仅应具有正的能态,而且也应具有负能态。他认为这些负能态通常被占满,偶而有一个态空出来,形成“空穴”,他写道:“如果存在空穴,则将是一种新的,对实验物理学来说还是未知的粒子,其质量与电子相同,电荷也与电子相等,但符号不同。我们可以称之为反电子。”他还预言:“可以假定,质子也会有它自己的负态。……其中未占满的状态表现为一个反质子。”关于反质子的预言,到1945年才由西格雷(Emilio Segrè)证实。
英国物理学家布莱克特(Baron Patrick Maynard Stuart Blackett, 1897-1974)从1921年起进行改进威尔逊云室照相技术以研究原子核的人工转变。1924年,他用云室照片首次成功地验证了人工轻核转变,即氦-14核俘获α粒子变为氧-17。1925年,他创制了云室照相受自动计数器控制的装置。在C.D.安德森发现正电子后的短短几个月,布莱克特就用他拍摄的正负电子成对产生过程的宇宙线径迹照片有力地证实了正电子的存在。
由于宇宙射线和正电子的发现有密切联系,诺贝尔委员会将1936年诺贝尔物理学奖授予这两个相关项目的赫斯和安德森,而布莱克特因改进威尔逊云室以及由此在核物理领域和宇宙射线方面作出的一系列发现,获得了1948年度诺贝尔物理学奖。
美国物理学家康普顿(Arthur Holy Compton,1892~1962)(右图)因发现康普顿效应(也称“康普顿散射”)于1927年获诺贝尔物理学奖。他的主要兴趣是核物理研究,他预见核能会给人类带来巨大的利益,为了充分利用核能,康普顿决定先研究宇宙射线,计划在1932年对地磁纬度不同和高海拔的地方,进行宇宙射线强度等方面的测量,康普顿组织了6个远征队,到世界各地的高山、赤道附近低纬度区等进行了广泛测量,以便对初始的宇宙射线到底是光子还是带电粒子作出合理的判断,康普顿本人主持了美国中西部的落矶山脉以及欧洲南部的阿尔卑斯山脉、澳大利亚、新西兰、秘鲁和加拿大等地的两个远征队。
1932年3月18日,康普顿开始了行程5万余英里,遍历五大洲,跨越赤道5次的远征,远征开始时,康普顿倾向于接受密立根的(光子的)假说,在广泛测量之后,他的观点有了根本性的变化,他断定:海平面的宇宙射线强度可以相当满意地表示为只是地磁场倾角的函数;宇宙射线的强度随高度连续地增大,密立根所断言的在9000米处有最大值并不存在。9月份以后,康普顿陆续收到60多位科学家在分布范围极广的69个观测站测量到的数据,反映了纬度从北78°到南46°、经度从东175°到西173°这个地理经纬度的范围内,宇宙射线强度的分布情形,康普顿宣布宇宙线存在纬度效应,并认为宇宙射线是带电的高能粒子。
密立根在1932年也进行了范围较广泛的观测。加利福尼亚理工学院一位年青物理学家内赫(H.V.Neher)发明了一种高灵敏度的自动记录验电器。空军的负责人同意密立根使用轰炸机,可将测量仪器带到8000多米高空。9月底,密立根在气象署的帮助下利用气球到平流层作了测量。如果宇宙射线真是带电粒子流,密立根应当有条件得到康普顿相同的结论的,但他们由观测所得到的结论却完全不同(左图为密立根发表的文章)。
1932年12月底,美国物理学会在新泽西州大西洋城(Atlantic City)召开会议,密立根和康普顿这两位诺贝尔物理奖获得者就宇宙射线的本质进行了激烈的争论。康普顿在会议上报告:不同纬度处宇宙射线强度有明显不同,说明初始宇宙射线有带电粒子的特征,并提出了支持这种观点的三种实验。密立根在大西洋会议上宣读了内赫跨越赤道航行的测量结果,没有发现纬度效应。由于双方都宣称自己有实验为证,无法统一思想,但大多数物理学家已经开始转向承认康普顿的观点。
1935年11月11日,由两名勇敢的驾驶员(Albert W. Stevens和Orvil A. Anderson)驾驶探测者2号氦气球(体积为113000立方英尺)上升到官方记录的22066米的高空,收集了大气、宇宙线和其他数据。
美国加利福尼亚理工学院的内德梅耶(Seth Neddermeyer,1907-1988)(右图)和安德森(Carl D. Anderson)1934年提出假设:具有高度贯穿力的踪迹是质量在电子与质子之间的粒子的踪迹。(左图为安德森与内德梅耶)
1936年,他们在宇宙射线中发现了一种带单位正电荷或负电荷的粒子,质量为电子的206.77倍,人们以为它就是汤川秀树1930年预言的介子,称它为μ介子,后来发现这种粒子其实并不参与强相互作用,是一种轻子,所以改名为μ子。
1938年,奥格尔(Pierre Auger,1899-1993)(右图)发现了广延空气簇射。簇射是由原始高能粒子撞击产生的次级亚原子粒子。他发现簇射的能量高达 1015 电子伏特,即当时已知的一千万倍。
1940年3月9日,一架比奇AD-17双翼飞机在海拔21050英尺高空飞越南极,为美国探险队测量宇宙线。
1946年,物理学家罗西(Bruno Rossi)与查才品(Georgi Zatsepin)领导的小组进行了首次空气簇射结构的实验(右图)。研究小组创建了首个探测空气簇射的相关探测器阵列。
1946年,两位英国科学家罗彻斯特(George D.Rochester)和巴特勒(Clifford C.Butler,1922-1999)拍了许多云雾室事件的照片,在其中一张照片中,发现了些形状象字母V的径迹。只有承认质量近似为494MeV/c2 的粒子在飞行中衰变成二个π介子时生成这些径迹,才能对此作出解释。人们确信存在一种新的粒子,根据其径迹形状,就叫它V粒子(左图)。这种V粒子现在叫作K0粒子,这就是后来被称为奇异粒子的一系列新粒子发现的开始。
1947年8月16日,物理学家波默兰茨(Martin Pomerantz)宣布放飞了4个携带宇宙线探测仪的气球(左图),在至少127000英尺的高度越过了南极地区。
1947年,英国的鲍威尔(Cecil Frank Powell,1903-1969)等人创造了将核乳胶用气球送到高层空间去记录宇宙线的方法,在玻利维亚安第斯山地区从宇宙射线中发现了汤川秀树1930年所预言的π介子,质量约为电子质量273倍,它与原子核之间有很强的相互作用,称为带电π介子。π介子存在的时间仅有两亿分之二点五秒,之后便分裂为μ介子,μ介子存在时间相对较长,为百万分之一秒,并以每秒钟上万公里的速度飞行。
汤川秀树与鲍威尔分别于1949年和1950年获得诺贝尔物理学奖。
1948 年,剑桥大学的天文学教授霍伊尔(Fred Hoyle,1915-2001)(左图)与邦迪(Hermann Bondi )、戈尔德(Thomas Gold )一起提出了“稳恒态宇宙理论”,该理论认为宇宙在大尺度上,包括任何时候和任何地方,都是一样的。在这个“稳恒态”宇宙中没有开始,没有结束。星系在各个方向上简单地飞离,就像烤蛋糕时蛋糕上的葡萄干随着蛋糕膨胀而远离。为了填补星系退行后留下的虚空并保持宇宙总的外观,他们假定物质在星系际空间无中生有地创生,物质的创生率(每立方公里每年产生一个粒子)恰好用来形成新的星系。
1948年,伽莫夫(George Gamow,1904-1968)和阿尔法(Ralph Asher Alpher,1921-)也提出了宇宙是从一个原始高密状态演化而来的理论,并请着名核物理学家贝蒂(Hans Bethe)一起署名,这一理论被称作αβγ( Alpher, Bethe,& Gamow )理论,霍伊尔在1952 年把它称为“大爆炸理论”(the Big Bang ),但他认为宇宙不会在一声爆炸中产生。
1949年,费米(Enrico Fermi,1901~1954)发表宇宙射线理论,尝试以超新星爆发的磁力冲击波来解释宇宙射线的粒子加速机制,但未足以解释最高能宇宙射线的存在。
1962年,美国麻省理工学院的林斯里(John Linsley)与同事,利用新墨西哥州火山农场10平方公里的空气簇射探测器组探测到一个能量估计为 1020 电子伏特的宇宙射线。
1965年,美国贝尔电话实验室的彭齐亚斯(Arno Penzias,1933-和威尔逊(R.W.Wilson)无意中发现了大爆炸理论预言的宇宙微波背景辐射。他们本想要使用一根大型通信天线进行射电天文学的实验研究,但因不断受到一个连续不断本底噪声的干扰,使得实验无法进行下去。那个噪声的波长为7.35厘米,相当于3.5k温度的黑体辐射,其各向同性的程度极高,而且与季节变化无关。几乎一年,他们想尽办法跟踪和除去这个噪声但丝毫不起作用,便打电话给普林斯顿大学的罗伯特·迪克(Robert Henry Dick, 1916~),向他描述遇到的问题,希望他能作出一种解释。迪克马上意识到两位年轻人想要除去的东西正是迪克研究组正在设法寻找的东西——宇宙大爆炸残留下来的某种宇宙背景辐射。彭齐亚斯和威尔逊获得了1978年诺贝尔物理学奖。
1966年,格雷森( Kenneth Greisen)、查才品(Georgi Zatsepin)和古兹文(Vadem Kuzmin)认为,高能宇宙线与微波背景辐射相互影响减小了能量,因此宇宙射线的能量应低于5 x 1019电子伏特。(右图为卫星记录的宇宙微波背景图)
[

‘柒’ 我看的康普斯顿排名全球130,清华北大貌似在前一百吧 怎么说康普斯顿比清华北大排名高

1 Harvard Univ USA 美国哈佛大学

2 Stanford Univ USA 美国斯坦福大学

3 Univ Cambridge UK 英国剑桥大学

4 Univ California - Berkeley 美国加州大学伯克利分校

5 Massachusetts Inst Tech (MIT) USA 美国麻省理工学院

6 California Inst Tech USA 美国加州理工学院

7 Princeton Univ USA 美国普林斯顿大学

8 Univ Oxford UK 英国牛津大学

9 Columbia Univ USA 美国哥伦比亚大学

10 Univ Chicago USA 美国芝加哥大学

11 Yale Univ USA 美国耶鲁大学

12 Cornell Univ USA 美国康奈尔大学

13 Univ California - San Diego USA 美国加州大学圣地亚哥分校

14 Tokyo Univ Japan 日本东京大学

15 Univ Pennsylvania USA 美国宾夕法尼亚大学

16 Univ California - Los Angeles USA 美国加州大学洛杉矶分校

17 Univ California - San Francisco USA 美国加州大学旧金山分校

18 Univ Wisconsin - Madison USA 美国威斯康星大学

19 Univ Michigan - Ann Arbor USA 美国密歇根大学

20 Univ Washington - Seattle USA 美国华盛顿大学(西雅图)

21 Kyoto Univ Japan 日本京都大学

22 Johns Hopkins Univ USA 美国约翰·霍普金斯大学

23 Imperial Coll London UK 英国伦敦帝国学院

24 Univ Toronto Canada 加拿大多伦多大学

25 Univ Coll London UK 英国伦敦学院大学

25 Univ Illinois - Urbana Champaign USA 美国伊利诺大学UC分校

27 Swiss Fed Inst Tech - Zurich Switzerland 瑞士联邦理工学院

28 Washington Univ - St. Louis USA 美国华盛顿大学(圣路易斯)

29 Rockefeller Univ USA 美国洛克菲勒大学

30 Northwestern Univ USA 美国西北大学

31 Duke Univ USA 美国杜克大学

32 New York Univ USA 美国纽约大学

33 Univ Minnesota - Twin Cities USA 美国明尼苏达大学

34 Univ Colorado - Boulder USA 美国科罗拉多大学

35 Univ California - Santa Barbara USA 美国加州大学桑塔巴巴拉分校

36 Univ British Columbia Canada 加拿大不列颠哥伦比亚大学

36 Univ Texas Southwestern Med Center USA 美国德州大学西南医学中心

38 Vanderbilt Univ USA 美国范德比尔特大学

39 Univ Utrecht Netherlands 荷兰乌得勒支大学

40 Univ Texas - Austin USA 美国德州大学奥斯丁分校

41 Univ Paris 06 France 法国巴黎第六大学

42 Univ California - Davis USA 美国加州大学戴维斯分校

43 Pennsylvania State Univ - Univ Park USA 美国宾夕法尼亚州立大学

44 Rutgers State Univ - New Brunswick USA 美国罗特格斯州立大学新布朗思 维克分校

45 Tech Univ Munich Germany 德国慕尼黑理工大学

46 Karolinska Inst Stockholm Sweden 瑞典卡罗林斯卡学院

47 Univ Edinburgh UK 英国爱丁堡大学

48 Univ Paris 11 France 法国巴黎第11大学

49 Univ Pittsburgh - Pittsburgh USA 美国匹兹堡大学

50 Univ Southern California USA 美国南加州大学

52 Univ Rochester USA 美国罗切斯特大学

53 Australian Natl Univ Australia 澳大利亚国立大学

54 Osaka Univ Japan 日本大阪大学

55 Univ California - Irvine USA 美国加州大学厄文分校

56 Univ North Carolina - Chapel Hill USA 美国北卡罗来那大学

57 Univ Maryland - Coll Park USA 美国马里兰大学

57 Univ Zurich Switzerland 瑞士苏黎世大学

59 Univ Copenhagen Denmark 丹麦哥本哈根大学

60 Univ Bristol UK 英国布里斯托尔大学

61 McGill Univ Canada 加拿大麦克吉尔大学

62 Carnegie Mellon Univ USA 美国卡耐基梅隆大学

63 Univ Leiden Netherlands 荷兰莱顿大学

64 Univ Heidelberg Germany 德国海德堡大学

65 Case Western Reserve Univ USA 美国凯斯西保留地大学

66 Moscow State Univ Russia 俄国莫斯科国立大学

67 Univ Florida USA 美国佛罗里达大学

68 Univ Oslo Norway 挪威奥斯陆大学

69 Tohoku Univ Japan 日本东北大学

69 Univ Sheffield UK 英国谢菲尔德大学

71 Pure Univ - West Lafayette USA 美国普渡大学

72 Univ Helsinki Finland 芬兰赫尔辛基大学

73 Ohio State Univ - Columbus USA 美国俄亥俄州立大学

74 Uppsala Univ Sweden 瑞典乌普萨拉大学

75 Rice Univ USA 美国莱斯大学

76 Univ Arizona USA 美国亚利桑那大学

77 King's Coll London UK 英国伦敦国王学院

78 Univ Manchester UK 英国曼彻斯特大学

79 Univ Goettingen Germany 德国古腾堡大学

80 Michigan State Univ USA 美国密歇根州立大学

80 Univ Nottingham UK 英国诺丁汉大学

82 Brown Univ USA 美国布朗大学

82 Univ Melbourne Australia 澳大利亚墨尔本大学

82 Univ Strasbourg 1 France 法国斯特拉斯堡第一大学

85 Ecole Normale Super Paris France 法国巴黎高等师范学院

86 Boston Univ USA 美国波士顿大学

86 Univ Vienna Austria 奥地利维也纳大学

88 McMaster Univ Canada 加拿大麦克马斯特大学

88 Univ Freiburg Germany 德国佛雷堡大学

90 Hebrew Univ Jerusalem Israel 以色列希伯莱大学

91 Univ Basel Switzerland 瑞士巴塞尔大学

92 Lund Univ Sweden 瑞典兰德大学

93 Univ Birmingham UK 英国伯明翰大学

93 Univ Roma - La Sapienza Italy 意大利罗马大学

95 Humboldt Univ Berlin Germany 德国柏林洪堡大学

95 Univ Utah USA 美国犹他大学

97 Nagoya Univ Japan 日本名古屋大学

97 Stockholm Univ Sweden 瑞典斯德哥尔摩大学

99 Tufts Univ USA 美国塔夫茨大学

国内金融学排名:
1.人民大学
全国重点,在大学里,金融学的整体实力最强,从早年的黄达到现在的周升业都是金融学的有名人物;各个分科目实力平均,不论是货币银行,证券投资还是国际金融都有一手.地区优势明显,学生素质高。
2.五道口
人民银行的嫡系,这一点优势无与伦比,学生水平高,基础条件好(费用也高)注重实际,容易找到工作。
3.西南财经大学
优势:全国重点,金融学中的货币银行学在全国最强,从他的硕士招生规模就可以看出来,校园环境好,清净。同学多,金融系统里校友多,以后有好处。
4.上海财经
优势:全国重点,证券学好,货币银行,国际金融一般,保险也可以,区位优势明显。
5.北京大学
优势:中国最好的大学之一,不用别的,只要是北大,出来就不愁。地方好,学校景色建设好。
6.厦门大学
985全国重点,货币银行,金融工程好,学校环境优美,有好的老师(张亦春)学生素质比较高。 知识宝库考研论坛,考研包过,考研高分,NBF考研包过资料,NBF包过考研报名,NBF研究生入学考试,NBF考研论坛,中国考研网,考研信息网,中国研究生信息网,中国考研,考研试题,考研网站Uv:a)\NH
7.复旦大学
优势:985全国重点,全国仅次与人大的金融综合性大学,在各方面都比较强,尤其是国际金融,货币银行。接受西方知识比较新,学校氛围也好,有几个好老师(姜波克)。 知识宝库考研论坛
8.对外经贸大学(原人民银行直属学校)
优势:全国重点,国际金融强,十分注重抓英语,注重实用能力,区位优势明显
9..南开大学
优势:985全国重点,从解放开始就树立了自己在国际金融学的首席地位,保险精算也是全国最好,学校好,学生素质高
10.中央财经大学(原隶属于财政部)
优势:区位优势,有好的学校条件,学生素质一流。 考研网站|NBF考研包过|考研社区|考研高分|NBF包过研究生入学|NBF包过研究生考试|p4W+Z.Z{
11.东北财经大学(原隶属于财政部) 优势:环境好,上学可以当疗养院,学生素质好 考研网站|NBF考研包过|考研社区|考研高分|NBF包过研究生入学|NBF包过研究生考试
12.西安交通大学(原人民银行直属学校)
优势:名牌大学,货币银行学比较好,原来人民银行直属学校(陕西财经学院),有几个好老师 知识宝库考研论坛,考研包过,考研高分,NBF考研包过资料,NBF包过考研报名,NBF研究生入学考试,NBF考研论坛,中国考研网,考研信息网,中国研究生信息网,中国考研,考研试题,考研网站
13.湖南大学(原人民银行直属学校)
优势:985全国重点大学,全国最早引如保险精算的学校,保险不错,原人民银行直属学校(湖南财经学院)货币银行也不错。
14.中南财经政法大学(原隶属财政部)
优势:合并后,比较重视金融学 。
15.清华大学
优势:中国最好的大学之一,学校建设好,理工科强,金融工程微观金融以走在中国最前列。
16.武汉大学 知识宝库考研论坛,考研包过,考研高分,NBF考研包过资料,NBF包过考研报名,NBF研究生入学考试,NBF考研论坛,中国考研网,考研信息网,中国研究生信息网,中国考研,考研试题,考研网站6
优势:985全国重点大学,学校校园风景好,金融学最近记几年比较重视,有好老师,黄宪好象是博导吧,金融工程也不错。 知识宝库考研论坛,考研包过,考研高分,NBF考研包过资料,NBF包过考研报名,NBF研究生入学考试,NBF考研论坛,中国考研网,考研信息网,中国研究生信息网,中国考研,考研试题,考研网
17.辽宁大学 考研网站|NBF考研包过|考研社区|考研高分|NBF包过研究生入学|NBF包过研究生考试
优势:地方重点大学,地方重视,有好老师,金融学白钦先,孔祥毅博导比较有名。
18.中山大学优势:校园风景好,广州地方也不错,金融系在岭南学院,学生素质比较高,毕业在南方比较吃香。毕业领两个学位证,好象岭南学院还发毕业证的

这是金融专业最好的几所大学!

‘捌’ 国产机油有哪些品牌

2014年国产润滑油十大排名
目前中国润滑油市场三足鼎立,形成了以长城昆仑为代表的国企军团,以美孚壳牌为代表的跨国军团,以及东昊龙蟠为代表的民企军团。尽管受到外商品牌多方面的竞争及压力,中国的民族品牌却仍在快速发展中。且看2014年中国润滑油十大品牌。
1. 长城
在2013年中国润滑油市场上,长城润滑油总销量第一,其中包装油销量第一,车用油、工业油也都有显着增长。拥有世界一流水平的全自动调合及包装生产线,可生产内燃机润滑油、工业齿轮油、液压油、润滑脂、防冻液、刹车液、金属加工液、船用油及润滑油添加剂等系列产品,广泛应用于航空航天、汽车、机械、冶金、矿采、石油化工电子等领域,。在世界品牌实验室发布的“中国500最具价值品牌排行榜”上,长城润滑油连续8年夺魁,稳居中国润滑油行业榜首。
2. 昆仑
中国石油润滑油公司是中国石油天然气股份有限公司的直属企业,集生产、研发、销售、服务于一体的专业化润滑油公司。公司现有2个研究开发中心、12个润滑油生产厂、6个销售分公司,总资产60亿元人民币,固定资产19亿元人民币,员工5000多人,能够生产28个大类700多个牌号的润滑油(脂、剂)产品,润滑油科研开发能力在国内处于领先水平,营销、服务、信息网络覆盖全国市场。
3. 统一
行业神话,曾经的民族润滑油领军品牌。后因某众所周知的原因被壳牌收购。以生产和销售“统一”牌润滑油系列产品享誉国内市场,产品覆盖汽车用油、摩托车用油、工业用油、工程机械用油及润滑脂、刹车油、不冻液、汽车护理品等众多石油化工领域。目前设有北京、咸阳、无锡三个工厂,年综合生产能力达60万吨,是目前中国最大的车用润滑油专业制造商之一。
4. 龙蟠
作为快速成长的民族品牌,隶属江苏龙蟠科技的龙蟠润滑油系列产品,已经拥有包括汽油机油、柴油机油、齿轮油、抗磨液压油、防冻液、制动液、润滑脂、汽车养护品等在内的400多个品种,生产和检测系统与国际先进水平全面接轨,整体产能已达每年30万吨,单班产能达到10万吨,成为中国润滑油行业成长速度最快的企业之一。另龙蟠科技旗下的子公司可兰素,是全国乃至亚太地区规模最大的汽车尾气还原剂生产商,在国内汽车行业的市场份额占有率超过70%。
5. 东昊
在汽车市场蓬勃发展的今天,东昊瞄准汽车后服务市场,通过并购扩建的方式,快速完成了产业布局,正式吹响了进军汽车后服务市场的号角。上海东昊油品有限公司是一家集润滑油和燃料油的研究开发、生产销售为一体的高新技术企业。公司目前拥有生产基地2.3万余平方米,千吨级油罐24座,厂区自建船运码头和车辆装卸平台,年加工生产基础油达50万吨,年产值超50亿(今年9月10由易贸主办的深圳基础油大会,将邀请东昊集团闵春光董事长作主旨发言,敬请期待)
6. 玉柴
成立于1995年,是国内第一家由发动机企业成功打造的高档润滑油品牌。公司总资产2.5亿元,生产能力达15万吨。2011年公司合并时销售收入达到30.69亿元,是玉柴集团增速最快的子公司之一。目前已形成“四地域三基地五公司”的产业布局,包括北海、重庆、大连三个生产基地,拥有近100家一级经销商,3000多家二级分销网络,同时依托、共享玉柴集团“95098”客服热线和2700多家玉柴服务站资源。后跟马石油进行了深度合作,并成立广西南宁玉柴马石油润滑油有限公司。
7. 康普顿
隶属于康普顿科技股份有限公司,产品涵盖汽车润滑油、工业润滑油、摩托车润滑油、润滑脂、防冻液、制动液等上千个品种,主要面向中高端市场。添加剂均使用世界前四大添加剂供应商的原装进口添加剂,基础油以整船进口的方式,主要采购新加坡,韩国,台湾,迪拜,德国等优质基础油,康普顿的产品质量比肩世界一线品牌的原装质量。公司现由中资控股,主要竞争对手为美孚,壳牌,嘉实多这三家一线外资品牌,几乎不和长城,昆仑,道达尔进行竞争。
8. 高科
江苏高科石化生产工业润滑油、车用润滑油、特种油剂三大系列十三大类200多个规格型号的产品。是研发、生产、销售,专业专注的润滑油剂生产企业。是行业内有影响力的实力企业之一。占地300余亩,库存容量5万多立方米。拥有国内先进的酯化、蒸馏、精馏、全自动脉冲调合等多套生产装置,年生产、销售10万多吨。公司荣获了中国润滑油行业年度最具影响力民族品牌。
9. 中华
提到中华,除了这个很讨口彩的名字之外,更多是因为其董事长姚旗。2011年,由拥有润滑油行业优势资源的多方重组的北京中润华油石油化工股份有限公司正式成立,公司拥有中华润滑油品牌。2012年,全新设计的全系列中华牌润滑油产品重新投放市。2013年,中华润滑油实现了产品线及销售额的快速增长。2014年5月,中华成立电子商务部,开始了行业新的尝试与探索。
10. 美合
美合石化成立于1999年,空调油起家,公司总部位于珠海,占地面积5.3万平方米,有大小原料储罐48个,总容量15000立方米,润滑油年产能达15万吨。拥有领先的高精度自动化生产线和国际先进的生产工艺。主要生产和销售中高档内燃机油、设备用油和金属加工液。“金美合”品牌车用润滑油已在全国诸多汽车4S店、维修厂和汽车美容店广泛销售应用。