当前位置:首页 » 股票股评 » 请从变异系数和股票风险
扩展阅读
设计总院股票历史股价 2023-08-31 22:08:17
股票开通otc有风险吗 2023-08-31 22:03:12
短线买股票一天最好时间 2023-08-31 22:02:59

请从变异系数和股票风险

发布时间: 2022-06-20 05:26:02

⑴ 投资:求变异系数的计算公式与计算过程。谢谢。

变异系数的计算公式为:变异系数 C_V =( 标准偏差 SD / 平均值Mean )× 100%变异系数只在平均值不为零时有定义,而且一般适用于平均值大于零的情况。变异系数也被称为标准离差率或单位风险。
(1)请从变异系数和股票风险扩展阅读:
1)变异系数是相对数形式表示的变异指标。它是通过变异指标中的全距、平均差或标准差与平均数对比得到的。常用的是标准差系数。
.2)变异系数的应用条件是:当所对比的两个数列的水平高低不同时,就不能采用全距、平均差或标准差百行对比分析,因为它们都是绝对指标,其数值的大小不仅受各单位标志值差异程度的影响;为了对比分析不同水平的变量数列之间标志值的变异程度,就必须消除水平高低的影响,这时就要计算变异系数。
3) 标准差系数是将标准差与相应的平均数对比的结果。标准差和其他变异指标一样,是反映标志变动度得绝对指标。它的大小,不仅取决于标准值的离差程度,还决定于数列平均水平的高低。因而对于具有不同水平的数列或总体,就不宜直接用标准差来比较其标志变动度的大小,而需要将标准差与其相应的平均数对比,计算标准差系数,即采用相对数才能进行比较。
1. 变异系数:v = 标准差/平均值
可见:变异系数是无量钢的。而平均值和标准差的量纲相同,都为随机变量的量纲。
2. 比较量纲不同的两个随机变量的分散度时用变异系数为好;
3. 量纲相同的两个随机变量但平均值差别较大时用变异系数评价分散度度;
4. 用变异系数评价分散度时消除了平均值大小的影响
4)标准差是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,反映一个数据集的离散程度。
标准差系数是标准差除以相应的平均数得到的百分比。
标准差是一个绝对指标。它的大小,不仅取决于标准值的离差程度,还决定于数列平均水平的高低。因而对于具有不同水平的数列,就不宜直接用标准差来比较其变动度的大小,而需要将标准差与其相应的平均数对比,计算标准差系数,即采用相对数才能进行比较。

⑵ 如何理解“风险越高,收益越高”

在投资理财中,有这样的一个流行观点:“风险越高,收益越大。”换句话说,就是人们为了获得更高的利益愿意承担更大的风险。从另一个方面来看,就是所承担的风险具有一定的价值。这就是人们常说的“风险价值”。

在实际生活中,由于人的理性是有限的,每一个人对未来所作的决策都不可能百分之百的准确。未来的变化是不确定的。对于未来变化的不确定性,有两种情况:其一,未来的变化具有统计特征,可以通过统计方法来分析,比如彩票;其二,未来变化是混沌的,无法通过统计方法来分析。风险则是指可以通过统计方法来处理的未来收益或损失的不确定性。

未来的风险既可能是发生危险与损失,也可能是获得机会与好处。大家来看这样的一个简单的随机数集合{19,16,21,24,24,25,13,19,23,17,18,15,14,17,18,14,18,19,20,19,19,19,24,20,19,18,26,23,27,18,25,15,22,23,26,20,18,22,19,22,16,17,15,19,20,20,19,27,15,18}。这个集合中共有50个数字。这组数据的平均值是20,方差是3。

如果这个集合是你作某个投资的收益各种可能回报,那么你这项投资的平均收益就是20万元,而未来可能的收益是围绕着20万元这个平均收益上下波动的。方差则是衡量波动幅度大小,方差越大,波动的幅度就越大,方差越小,波动幅度越小。

再来看这样一组投资收益的数据{18,15,20,18,20,18,16,18,21,17,15,17,14,13,13,19,17,17,15,17,12,20,16,13,20,13,13,17,16,17,16,24,17,17,19,15,18,18,20,11,18,17,16,14,17,19,17,14,16,14,31}。这组数据的平均收益是16万元,方差也是3万元,方差和前一组数据相同。很明显,在方差相同的情况下,平均收益越高,波动的程度就越小。

为了更好地区分这种波动程度的不同,可以引入变异系数的概念,变异系数=方差/均值。变异系数越大,波动程度越大。对于风险的统计分析,则是通过这种均值——方差分析得来的。简单地说,变异系数越大,风险越高,变异系数越小,风险越低。在所举的两个例子中,(3/20)<(3/16),因而前一种投资的风险比后一种投资的风险要小。

通过这两个例子,大家可以明显发现,前者的平均收益20万元比后者的平均收益16万元要高,然而风险却低于后者。肯定会有人产生疑问,难道“高风险高收益”错了吗?实际上,任何投资包括个人理财的投资都具有不同性质的风险。比如你购买股票,风险可能来自于市场内在的震荡、国家政策的变化、央行的突然加息降息或汇率调整、政治事件、某个企业的会计欺诈等多种因素。这许许多多的风险对于一个具体的投资项目可以分成系统性风险与非系统性风险。诺贝尔奖获得者马克维兹早在几十年以前就通过统计学方法证明出,当合理投资于多个项目的时候非系统性风险就可以被分散化解,当投资组合足够大时所留下的不能被分散化解的只可能是系统性的市场风险。现在就很容易能够理解上述两个例子的问题,前者平均收益高于后者而风险低于后者的原因是:后者的非系统性风险要高于前者,前者的系统风险则高于后者。

所谓“高风险高回报”的含义就是指系统性风险越高收益越高。

各种投资理财项目的风险与收益之间的关系如表3所示。

表3投资理财项目的风险与收益 国库券 公司债券政府债券 房地产市场 国内股票 境外证券风险投资风险 低风险 较低风险 中等风险 较高风险 高风险收益 低收益 较低收益 中等收益 较高收益 高收益?

⑶ 财务管理关于风险、变异系数判断的选择题

因为甲项目的标准差小于乙项目的标准差。
这题的关键点在于标准差。
预期值不相同的情况下,根据变异系数的大小比较其风险的大小,由公式变异系数=标准差/均值,可以求出甲的变异系数小于乙的变异系数,由此可以判定甲项目的风险小于乙项目的风险;风险即指未来预期结果的不确定性,风险越大其波动幅度就越大,则选项A错误,选项B正确;选项C、D的说法均无法证实。
标准差
表示的就是样本数据的离散程度。标准差就是样本平均数方差的开平方,标准差通常是相对于样本数据的平均值而定的,通常用M±SD来表示,表示样本某个数据观察值相距平均值有多远。从这里可以看到,标准差受到极值的影响。标准差越小,表明数据越聚集;标准差越大,表明数据越离散。标准差的大小因测验而定,如果一个测验是学术测验,标准差大,表示学生分数的离散程度大,更能够测量出学生的学业水平;如果一个测验测量的是某种心理品质,标准差小,表明所编写的题目是同质的,这时候的标准差小的更好。标准差与正态分布有密切联系:在正态分布中,1个标准差等于正态分布下曲线的68.26%的面积,1.96个标准差等于95%的面积。这在测验分数等值上有重要作用。

⑷ 如何用这些数据算季度的股票收益风险和变异系数

这些东西没用的 股票上涨是因为钱进去了 跌是因为钱出来了 和这些报表无关的
看报表做股票 呵呵
你去看看 中铝的报表就知道了 按着报表做 死翘翘的

⑸ 证券组合投资的收益与风险计算

β系数在证券投资中的应用
06级金融班 冷松

β系数常常用在投资组合的各种模型中,比如马柯维茨均值-方差模型、夏普单因素模型(Shape Single-Index Model)和多因素模型。具体来说,β系数是评估一种证券系统性风险的工具,用以量度一种证券或一个投资证券组合相对于总体市场的波动性,β系数利用一元线性回归的方法计算。
(一)基本理论及计算的意义
经典的投资组合理论是在马柯维茨的均值——方差理论和夏普的资本资产定价模型的基础之上发展起来的。在马柯维茨的均值——方差理论当中是用资产收益的概率加权平均值来度量预期收益,用方差来度量预期收益风险的:
E(r)=∑p(ri) ri (1)
σ2=∑P(ri)[ri—E(r)]2 (2)
上述公式中p(ri)表示收益ri的概率,E(r)表示预期收益,σ2表示收益的风险。夏普在此基础上通过一些假设和数学推导得出了资本资产定价模型(CAPM):
E(ri)=rf +βi [E(rM)—rf] (3)
公式中系数βi 表示资产i的所承担的市场风险,βi=cov(r i , r M)/var(r M) (4)
CAPM认为在市场预期收益rM 和无风险收益rf 一定的情况下,资产组合的收益与其所分担的市场风险βi成正比。
CAPM是基于以下假设基础之上的:
(1)资本市场是完全有效的(The Perfect Market);
(2)所有投资者的投资期限是单周期的;
(3)所有投资者都是根据均值——方差理论来选择有效率的投资组合;
(4)投资者对资产的报酬概率分布具有一致的期望。
以上四个假设都是对现实的一种抽象,首先来看假设(3),它意味着所有的资产的报酬都服从正态分布,因而也是对称分布的;投资者只对报酬的均值(Mean)和方差(Variance)感兴趣,因而对报酬的偏度(Skewness)不在乎。然而这样的假定是和实际不相符的!事实上,资产的报酬并不是严格的对称分布,而且风险厌恶型的投资者往往具有对正偏度的偏好。正是因为这些与现实不符的假设,资本资产定价模型自1964年提出以来,就一直处于争议之中,最为核心的问题是:β系数是否真实正确地反映了资产的风险?
如果投资组合的报酬不是对称分布,而且投资者具有对偏度的偏好,那么仅仅是用方差来度量风险是不够的,在这种情况下β系数就不能公允的反映资产的风险,从而用CAPM模型来对资产定价是不够理想的,有必要对其进行修正。
β系数是反映单个证券或证券组合相对于证券市场系统风险变动程度的一个重要指标。通过对β系数的计算,投资者可以得出单个证券或证券组合未来将面临的市场风险状况。
β系数反映了个股对市场(或大盘)变化的敏感性,也就是个股与大盘的相关性或通俗说的"股性",可根据市场走势预测选择不同的β系数的证券从而获得额外收益,特别适合作波段操作使用。当有很大把握预测到一个大牛市或大盘某个不涨阶段的到来时,应该选择那些高β系数的证券,它将成倍地放大市场收益率,为你带来高额的收益;相反在一个熊市到来或大盘某个下跌阶段到来时,你应该调整投资结构以抵御市场风险,避免损失,办法是选择那些低β系数的证券。为避免非系统风险,可以在相应的市场走势下选择那些相同或相近β系数的证券进行投资组合。比如:一支个股β系数为1.3,说明当大盘涨1%时,它可能涨1.3%,反之亦然;但如果一支个股β系数为-1.3%时,说明当大盘涨1%时,它可能跌1.3%,同理,大盘如果跌1%,它有可能涨1.3%。β系数为1,即说明证券的价格与市场一同变动。β系数高于1即证券价格比总体市场更波动。β系数低于1即证券价格的波动性比市场为低。
(二)数据的选取说明
(1)时间段的确定
一般来说对β系数的测定和检验应当选取较长历史时间内的数据,这样才具有可靠性。但我国股市17年来,也不是所有的数据均可用于分析,因为CAPM的前提要求市场是一个有效市场:要求股票的价格应在时间上线性无关,而2006年之前的数据中,股份的相关性较大,会直接影响到检验的精确性。因此,本文中,选取2005年4月到2006年12月作为研究的时间段。从股市的实际来看,2005年4月开始我国股市摆脱了长期下跌的趋势,开始进入可操作区间,吸引了众多投资者参与其中,而且人民币也开始处于上升趋势。另外,2006年股权分置改革也在进行中,很多上市公司已经完成了股改。所以选取这个时间用于研究的理由是充分的。
(2)市场指数的选择
目前在上海股市中有上证指数,A股指数,B股指数及各分类指数,本文选择上证综合指数作为市场组合指数,并用上证综合指数的收益率代表市场组合。上证综合指数是一种价值加权指数,符合CAPM市场组合构造的要求。
(3)股票数据的选取
这里用上海证券交易所(SSE)截止到2006年12月上市的4家A股股票的每月收盘价等数据用于研究。这里遇到的一个问题是个别股票在个别交易日内停牌,为了处理的方便,本文中将这些天该股票的当月收盘价与前一天的收盘价相同。
(4)无风险收益(rf)
在国外的研究中,一般以3个月的短期国债利率作为无风险利率,但是我国目前国债大多数为长期品种,因此无法用国债利率作为无风险利率,所以无风险收益率(rf)以1年期银行定期存款利率来进行计算。
(三)系数的计算过程和结果
首先打开“大智慧新一代”股票分析软件,得到相应的季度K线图,并分别查询鲁西化工(000830),首钢股份(000959),宏业股份(600128)和吉林敖东(000623)的收盘价。打开Excel软件,将股票收盘价数据粘贴到Excel中,根据公式:月收益率=[(本月收盘价-上月收盘价)/上月收盘价]×100%,就可以计算出股票的月收益率,用同样的方法可以计算出大盘收益率。将股票收益率和市场收益率放在同一张Excel中,这样在Excel表格中我们得到两列数据:一列为个股收益率,另一列为大盘收益率。选中某一个空白的单元格,用Excel的“函数”-“统计”-“Slope()函数”功能,计算出四支股票的β系数。

下面列示数据说明:
鲁西化工000830 首钢股份000959 弘业股份600128 吉林敖东000623 上证 市场收益率 市场超额收益率 市场无风险收益率
统计时间 收盘价 收益率 超额 收盘价 收益率 超额 收盘价 收益率 超额 收盘价 收益率 超额 指数
收益率 收益率 收益率 收益率
05年4月 4.51 基期 3.77 基期 3.29 基期 4.69 基期 1159.14
05年5月 3.81 -6.23% -8.65% 3.68 7.54% 5.12% 3.48 4.53% 2.11% 7.02 -7.77% -10.19% 1060.73 -2.56% -4.98% 2.42%
05年6月 3.98 8.33% 5.91% 3.35 -18.39% -20.81% 3.3 4.39% 1.97% 8.49 15.07% 12.65% 1080.93 8.03% 5.61% 2.42%
05年7月 4.76 -9.07% -11.49% 3.12 -13.10% -15.52% 3.02 -30.67% -33.09% 9.96 -11.30% -13.72% 1083.03 -8.72% -11.14% 2.42%
05年8月 3.33 -19.28% -21.70% 3.57 -12.97% -15.39% 4.11 -16.93% -19.35% 8.17 -0.87% -3.29% 1162.79 -14.16% -16.58% 2.42%
05年9月 3.45 -2.71% -5.03% 3.35 8.19% 5.87% 3.73 13.08% 10.76% 9.86 36.64% 34.32% 1155.61 11.26% 8.94% 2.32%
05年10月 3.32 -7.62% -9.94% 3.15 -10.33% -12.65% 3.51 4.66% 2.34% 8.17 27.03% 24.71% 1092.81 -1.63% -3.95% 2.32%
05年11月 3.46 -15.45% -17.77% 2.41 -9.21% -11.53% 3.38 -18.34% -20.66% 9.86 -1.68% -4.00% 1099.26 -8.00% -10.32% 2.32%
05年12月 3.48 3.41% 1.09% 2.46 -8.88% -11.20% 3.39 10.49% 8.17% 16.55 17.79% 15.47% 1161.05 9.50% 7.18% 2.32%
06年1月 3.6 45.66% 43.14% 2.75 23.67% 21.15% 3.86 3.13% 0.61% 19.25 8.28% 5.76% 1258.04 16.34% 13.82% 2.52%
06年2月 4.67 -57.66% -60.18% 2.79 -12.57% -15.09% 3.75 -19.06% -21.58% 21.73 -42.86% -45.38% 1299.03 -19.66% -22.18% 2.52%
06年3月 4.57 9.47% 6.95% 3.05 0.43% -2.09% 2.95 -3.41% -5.93% 24.51 -8.22% -10.74% 1298.29 -0.18% -2.70% 2.52%
06年4月 2.65 -5.54% -8.06% 2.96 -7.26% -9.78% 3.28 -17.55% -20.07% 50.00 -39.26% -41.78% 1440.22 -9.32% -11.84% 2.52%
06年5月 3.22 -0.23% -3.60% 2.8 -13.13% -16.50% 3.81 -1.14% -4.51% 65.34 -9.05% -12.42% 1641.3 -6.73% -10.10% 3.37%
06年6月 3.37 -21.41% -24.78% 2.84 -5.57% -8.94% 3.69 10.55% 7.18% 49.75 -0.46% -3.83% 1672.21 -8.49% -11.86% 3.37%
06年7月 3.48 21.26% 17.89% 2.91 4.21% 0.84% 4.48 8.50% 5.13% 62.3 20.00% 16.63% 1612.73 6.91% 3.54% 3.37%
06年8月 3.37 3.70% 0.33% 2.97 -8.36% -11.73% 4.78 17.47% 14.10% 74.1 -35.85% -39.22% 1658.63 0.47% -2.90% 3.37%
06年9月 3.27 14.29% 11.15% 3.13 -17.94% -21.08% 4.73 11.38% 8.24% 7.01 5.44% 2.30% 1752.42 11.82% 8.68% 3.14%
06年10月 3.17 67.50% 64.36% 3.41 10.75% 7.61% 4.39 -18.97% -22.11% 91.28 67.91% 64.77% 1837.99 28.80% 25.66% 3.14%
06年11月 3.12 -32.71% -35.85% 4.35 -4.21% -7.35% 4.2 58.86% 55.72% 60.02 -11.09% -14.23% 2099.29 4.80% 1.66% 3.14%
06年12月 3.16 24.21% 21.07% 5.01 22.30% 19.16% 4.43 52.43% 49.29% 68.28 56.81% 53.67% 2675.47 52.67% 49.53% 3.14%
鲁西化工(000830)的β系数=0.89
首钢股份(000959)的β系数=1.01
弘业股份(600128)的β系数=0.78
吉林敖东(000623)的β系数=1.59
(三)结论
计算出来的β值表示证券的收益随市场收益率变动而变动的程度,从而说明它的风险度,证券的β值越大,它的系统风险越大。β值大于0时,证券的收益率变化与市场同向,即以极大可能性,证券的收益率与市场同涨同跌。当β值小于0时,证券收益率变化与市场反向,即以极大可能性,在市场指数上涨时,该证券反而下跌;而在市场指数下跌时,反而上涨。(在实际市场中反向运动的证券并不多见)
根据上面对四只股票β值的计算分析说明:首钢股份和吉林敖东的投资风险大于市场全部股票的平均风险;而鲁西化工和宏业股份的投资风险小于市场全部股票的平均风险。那我们在具体的股票投资过程中就可以利用不同股票不同的β值进行投资的决策,一般来说,在牛市行情中或者短线交易中我们应该买入β系数较大的股票,而在震荡市场中或中长线投资中我们可以选取β值较小的股票进行风险的防御。

⑹ 请问平均值,标准差,变异系数,损失风险是如何计算的

这些名词听起来好像很神秘,其实都有公式,把值代入计算就可以得到了。建议你看看教材,代入计算。

⑺ 英语统计题(有关变异系数)

原文就是这么说的。。
我想括号里面是一个提示,让学生从风险角度分析,决定买哪个股票。

⑻ 变异系数的基本含义

一般来说,变量值平均水平高,其离散程度的测度值越大,反之越小。
变异系数是衡量资料中各观测值变异程度的另一个统计量。当进行两个或多个资料变异程度的比较时,如果度量单位与平均数相同,可以直接利用标准差来比较。如果单位和(或)平均数不同时,比较其变异程度就不能采用标准差,而需采用标准差与平均数的比值(相对值)来比较。标准差与平均数的比值称为变异系数,记为C·V。变异系数可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。
变异系数的计算公式为:变异系数
C·V
=(
标准偏差
SD
/
平均值Mean
)×
100%
在进行数据统计分析时,如果变异系数大于15%,则要考虑该数据可能不正常,应该剔除。

⑼ 某证券变异系数1.71,期望收益0.07,则标准差为什么

咨询记录 · 回答于2021-11-27

⑽ 什么是变异系数

变异系数(Coefficient of Variation):当需要比较两组数据离散程度大小的时候,如果两组数据的测量尺度相差太大,或者数据量纲的不同,直接使用标准差来进行比较不合适,此时就应当消除测量尺度和量纲的影响。

而变异系数可以做到这一点,它是原始数据标准差与原始数据平均数的比。CV没有量纲,这样就可以进行客观比较了。事实上,可以认为变异系数和极差、标准差和方差一样,都是反映数据离散程度的绝对值。其数据大小不仅受变量值离散程度的影响,而且还受变量值平均水平大小的影响。

(10)请从变异系数和股票风险扩展阅读

计算方法

变异系数的计算公式为:变异系数 C·V =( 标准偏差 SD / 平均值Mean )× 100%

在概率论和统计学中,变异系数,又称“离散系数”(英文:coefficient of variation),是概率分布离散程度的一个归一化量度,其定义为标准差与平均值之比,公式:

$$ cv = frac{sigma}{mu} $$